
The RooRarFit Document

The RooRarFit Document

Lei Zhang

Installation 1

Installation

To install RooRarFit, download the tar file from SF.net
(http://sourceforge.net/projects/rarfit), unpack and compile. Make sure
$ROOTSYS is defined first and that the ROOT libraries are in your library path.

> echo $ROOTSYS; echo $LD_LIBRARY_PATH

> tar -zxvf RooRarFit.VXX.YY.ZZZ.tar.gz

> cd RooRarFit

> make bin

This will create an executable in ./tmp.

> ./tmp/rarFit

2 RooRarFit

Preface 3

Preface

What is RooRarFit?

RooRarFit is a general Maximum Likelihood (ML) fitting package based on ROOT
(http://root.cern.ch/) / RooFit (http://root.cern.ch/drupal/content/roofit). It
is an application package making use of ROOT/RooFit so physicists can be virtually free
from direct ROOT/RooFit coding.

Why not use RooFit directly?

A ill-designed tool sometimes can really limit analysis capacity, so for best flexibility and
availability, we could be better off using ROOT/RooFit directly. However this fitter requires
no direct C++ coding, which is highly preferable for the purpose of productivity.

By using plain text configuration files, it is virtually free of coding for final users, so
people do not need much programming experience to use it. Debugging an analysis is quite
frustrating and if people have to compile code for individual analyses, he has to make sure
the code for every mode is correct and has to debug it if something is wrong.

General Idea of RooRarFit

The idea of the fitter is that it acts as a wrapper of RooFit so that the fitter is driven by
a readable text configuration files. It should be easy to implement, easy to improve, and
easy to expand. If the goal as a wrapper is clear, all of the features are easy to realize.

The configuration file has three main parts, each having one or more sections.

1. Dataset Definition
This defines the dataset and reads in all the datasets.

2. PDF Configuration
All the PDFs are defined here. It can have any number of components in the ML
function with any number of variables. Each PDF has its own configuration section.
Fitter classes are wrappers of those in RooFit, and PDFs like Gaussian, TwoGauss,
BifurGauss, Polynomial, etc..., are implemented, as well as combination operations like
Add, Prod, etc. So it is very easy to build new PDF, through a configuration file only!

3. Fitter Action Section
After every PDF is created, this part of the configuration file is used to direct the fitter
to finish its job. Possible actions include fitting the PDFs (pdfFit), fitting the model
(mlFit), performing Monte Carlo Toy studies (toyStudy), projection plotting (Pro-
jAct), scanning the log-likelihood distribution (ScanAct), making sPlots (SPlotAct)
and combing statitsical and systematic errors (CombineAct). For each fitting job, one
can decide which action, or what action combinations, to perform.

4 RooRarFit

Chapter 1: RooRarFit Implementation 5

1 RooRarFit Implementation

The source codes of the new mlFitter can be classified into three groups:

1. Auxiliary Classes, Files, Main Program and Scripts

• rarFit.cc (http://rarfit.sourceforge.net/html/rarFit_8cc.html), the main
programme
It first creates a rarDatasets (#item_rarDatasets) object through which all the
datasets are read in, then it sets the master (mlFitter) section name and instan-
tiates mlFitter class, rarMLFitter (#item_rarMLFitter), so that all the PDF are
created, and finally it sets toyID (random seed) and calls run() of the fitter to
finish the job. If successfully compiled and linked, type rarFit to see short help
page like:

rarFit [-options] <RooRarFit_Config_file>

-h this help page

-D <data input section> (default "Dataset Input")

-C <mlFitter config section> (default "mlFitter Config")

-A <fitter action section> (default "Fitter Action")

-t <toy job id> (default 0)

-n <toyNexp> (default 0, use config)

-d <toy dir> (default .toyData)

You can set environment variables to control the behavior of the fitter:

• PARAMDIR: The dir for all param files (default .params)

• RESULTDIR: The dir for all root files (default results)

• RANDOMSEEDBASE: The random seed will be based on this value and toy job
ID. It should be an integer (default 0).

Environment variables are intended for scripting, so it is NOT recommended to
use them at command line interactively.

• submitToy, script to submit batch (toy) jobs
This is a Perl script submitToy used to submit batch jobs on many BaBar sites,
slac, ral, cu-boulder, ed. It is called submitToy, but it can submit any kind of
rarFit jobs (actions) which can be split and the results of which can be merged.
For example, toy study, scanPlot (multi-dimensional), and projPlot (for LLR plot),
can be split and submitted using this script. Type submitToy -h for help page:

Usage : submitToy [options] configFile

where configFile is a RooRarFit config file and

options are (defaults in parenthesis):

-h : this help message

-n nExp : total number of experiments

-j nJobs : number of jobs to run

-D dsi : toyAct dsi from config

-C pdfConfSec: toyAct master PDF section from config

-A action : toyAct name from config

6 RooRarFit

-q queue : specific queue to submit to

-d jobDir : directory for the jobs (toyJob)

-t : testing, not submit the jobs in the queue

This script will take a config file that configures

a RooRarFit job and split it into a number of separate jobs.

The jobs are then submitted to the queue of your choice.

Example: submitToy -n 500 -j 10 -A eToyAct -d etoy_omks omks.config

submits 10 jobs based on the eToyAct action in the

omks.config file

• rarStrParser
(http://rarfit.sourceforge.net/html/classrarStrParser.html)
It breaks a string into tokens separated by spaces. Characters inside quote(") are
considered one token.

• rarVersion.hh (http://rarfit.sourceforge.net/html/rarVersion_8hh.html)
In this header file, several C++ macros to deal with version related codes are
defined.

• rarMinuit (http://rarfit.sourceforge.net/html/classrarMinuit.html)
It is adopted for contour plot.

• rarNLL (http://rarfit.sourceforge.net/html/classrarNLL.html)
It deals with Negative Log-Likelihood (NLL) NLL curves to get significance, upper
limits, etc. By using analytical integral of parabolic fit wrt 3 points in the NLL
curve, the accuracy is much more improved than using just linear fit.

2. Dataset Classes

• rarDatasetDef
(http://rarfit.sourceforge.net/html/classrarDatasetDef.html)
It defines the format of dataset, ie, how many fields, the type of each field, etc.

• rarDatasets (http://rarfit.sourceforge.net/html/classrarDatasets.html)
It first instantiates a rarDatasetDef (#item_rarDatasetDef) object to get the
dataset definitions, then it reads in and holds all the datasets from ASCII or root
files. It also holds datasets derived from those primary datasets.

3. PDF Classes

• rarBasePdf (http://rarfit.sourceforge.net/html/classrarBasePdf.html),
base class of PDF builder.

• rarCompBase
(http://rarfit.sourceforge.net/html/classrarCompBase.html), base class
for composite PDF builder.

• rarProd (http://rarfit.sourceforge.net/html/classrarProd.html),
product PDF builder, (RooProdPdf
(http://root.cern.ch/root/html/RooProdPdf.html))

• rarAdd (http://rarfit.sourceforge.net/html/classrarAdd.html),
add PDF/model builder, (RooAddPdf

Chapter 1: RooRarFit Implementation 7

(http://root.cern.ch/root/html/RooAddPdf.html) / RooAddModel
(http://root.cern.ch/root/html/RooAddModel.html))

• rarMLPdf (http://rarfit.sourceforge.net/html/classrarMLPdf.html), ex-
tended AddPdf as prototype PDF to build final mlFitter, sub-class of rarAdd
(#item_rarAdd)

• rarMLFitter
(http://rarfit.sourceforge.net/html/classrarMLFitter.html), mlFitter
class, sub-class of rarCompBase (#item_rarCompBase),
which is instantiated by the main program in rarFit.cc
(#item_rarFit.cc), then builds PDFs from top to bottom, and
creates simultaneous fit model through RooSimPdfBuilder
(http://root.cern.ch/root/html/RooSimPdfBuilder.html) if required, and
finally finishes its job through run() function called by the main program.

• Wrappers of other RooFit PDF classes

• rarSimPdf
(http://rarfit.sourceforge.net/html/classrarSimPdf.html),
(RooSimultaneous
(http://root.cern.ch/root/html/RooSimultaneous.html))

• rarBallack
(http://rarfit.sourceforge.net/html/classrarBallack.html)

• rarBinned
(http://rarfit.sourceforge.net/html/classrarBinned.html)

• rarCruijff
(http://rarfit.sourceforge.net/html/classrarCruijff.html)

• rarFlatte (http://rarfit.sourceforge.net/html/classrarFlatte.html)

• rarVoigtian
(http://rarfit.sourceforge.net/html/classrarVoigtian.html)

• rarRelBreitWigner
(http://rarfit.sourceforge.net/html/classrarRelBreitWigner.html)

• rarGounarisSakurai
(http://rarfit.sourceforge.net/html/classrarGounarisSakurai.html)

• rarExp (http://rarfit.sourceforge.net/html/classrarExp.html), (Ex-
ponential (http://root.cern.ch/root/html/RooExponential.html))

• rarGaussian
(http://rarfit.sourceforge.net/html/classrarGaussian.html),
(Gaussian (http://root.cern.ch/root/html/RooGaussian.html) /
BreitWigner (http://root.cern.ch/root/html/RooBreitWigner.html))

• rarTwoGauss
(http://rarfit.sourceforge.net/html/classrarTwoGauss.html),
(TwoGaussian)

• rarTriGauss
(http://rarfit.sourceforge.net/html/classrarTriGauss.html),
(TripleGauss / TripleGaussModel / GexpShape)

8 RooRarFit

• rarBifurGauss
(http://rarfit.sourceforge.net/html/classrarBifurGauss.html),
(BifurGauss (http://root.cern.ch/root/html/RooBifurGauss.html))

• rarCBShape
(http://rarfit.sourceforge.net/html/classrarCBShape.html),
(Crystal Ball Shape (http://root.cern.ch/root/html/RooCBShape.html))

• rarPoly (http://rarfit.sourceforge.net/html/classrarPoly.html),
(Polynomial (http://root.cern.ch/root/html/RooPolynomial.html) /
RooChebychev (http://root.cern.ch/root/html/RooChebychev.html))

• rarArgusBG
(http://rarfit.sourceforge.net/html/classrarArgusBG.html),
(ArgusBG (http://root.cern.ch/root/html/RooArgusBG.html))

• rarStep (http://rarfit.sourceforge.net/html/classrarStep.html),
(ParametricStepFunction
(http://root.cern.ch/root/html/RooParametricStepFunction.html))

• rarKeys (http://rarfit.sourceforge.net/html/classrarKeys.html),
(Keys (http://root.cern.ch/root/html/RooKeysPdf.html) / 2DKeys
(http://root.cern.ch/root/html/Roo2DKeysPdf.html))

• rarGeneric
(http://rarfit.sourceforge.net/html/classrarGeneric.html),
(Generic (http://root.cern.ch/root/html/RooGenericPdf.html))

• rarGaussModel
(http://rarfit.sourceforge.net/html/classrarGaussModel.html),
(GaussModel (http://root.cern.ch/root/html/RooGaussModel.html))

• rarDecay (http://rarfit.sourceforge.net/html/classrarDecay.html),
(BCPGenDecay
(http://root.cern.ch/root/html/RooBCPGenDecay.html) / BDecay
(http://root.cern.ch/root/html/RooBDecay.html) / RooDecay
(http://root.cern.ch/root/html/RooDecay.html))

• rarHistPdf
(http://rarfit.sourceforge.net/html/classrarHistPdf.html),
(RooHistPdf (http://root.cern.ch/root/html/RooHistPdf.html))

• rarUniform
(http://rarfit.sourceforge.net/html/classrarUniform.html),
(RooUniform (http://root.cern.ch/root/html/RooUniform.html))

• rarConfig (http://rarfit.sourceforge.net/html/classrarConfig.html), base
class for dataset and PDF classes

Dataset and PDF classes (the 2nd and 3rd items above) are both derived from base
class, rarConfig (#item_rarConfig), which defines common data and functions to
construct dataset/PDF objects from config files. The actual creator for objects of
RooRealVar (http://root.cern.ch/root/html/RooRealVar.html), RooConstVar
(http://root.cern.ch/root/html/RooConstVar.html), RooUnblindPrecision
(http://root.cern.ch/root/html/RooUnblindPrecision.html), RooCategory

Chapter 1: RooRarFit Implementation 9

(http://root.cern.ch/root/html/RooCategory.html), RooMappedCategory
(http://root.cern.ch/root/html/RooMappedCategory.html), RooThresholdCate-
gory (http://root.cern.ch/root/html/RooThresholdCategory.html),
RooStringVar (http://root.cern.ch/root/html/RooStringVar.html),
RooFormulaVar (http://root.cern.ch/root/html/RooFormulaVar.html), is the
createAbsVar (http://rarfit.sourceforge.net/html/classrarConfig.html#b12)
function of rarConfig. Creation of RooDataSet
(http://root.cern.ch/root/html/RooDataSet.html)
is done by function createDataSet
(http://rarfit.sourceforge.net/html/classrarConfig.html#b15), and all
RooRarFit PDF objects except rarMLFitter (#item_rarMLFitter) are created by its
createPdf (http://rarfit.sourceforge.net/html/classrarConfig.html#b16).

To add new type of RooRarFit PDF, one has to do two things to make new type of
RooRarFit PDF available. First he needs to create a new class inherited from
rarBasePdf (#item_rarBasePdf), second he adds an entry in function createPdf
(http://rarfit.sourceforge.net/html/classrarConfig.html#b16) so the new
class can be instantiated through the standard creation mechanism in RooRarFit.

To make it easier for user to add their own PDFs, empty RooRarFit PDF class
rarUsrPdf can be modified to have quick access to PDFs not defined currently with
RooRarFit. See Section 2.2.31 [rarUsrPdf Configuration], page 45.

10 RooRarFit

Chapter 2: RooRarFit Configuration 11

2 RooRarFit Configuration

2.1 Dataset Configuration

The dataset configs have two parts: one is to define the structure of dataset entry, the other
one is to read in and store the datasets.

2.1.1 Dataset Definition Section

The container of dataset column definitions, an object of class rarDatasetDef (#item_
rarDatasetDef), is instantiated by datasets object, rarDatasets (#item_rarDatasets), and
its configuration section is specified in dataset input section with configuration dsdSec See
Section 2.1.2 [Dataset Input], page 15. If dsdSec is not specified, the default dataset defi-
nition section is [Dataset Definition].

• Fields = <field01> <field02> ... <fieldN>

• <field01> = <varType> ...

• <field02> = <varType> ...

• ...

• <fieldN> = <varType> ...

Fields is a string containing all the names of the variables in data files. The order of
the variables should be the same as in the ascii data file. <varType> can be RooRealVar,
RooCategory, or RooStringVar.

• AddOns = <addon01> ... <addonM>

• <addon01> = <derivedVarType> ...

• ...

• <addonM> = <derivedVarType> ...

Optional AddOns specifies derived columns for a dataset after it is read in from data
file. <addon01>, ..., <addonM> must be derived from other variables declared in
Fields. <derivedVarType> can be RooFormulaVar, RooMappedCategory,
RooThresholdCategory, RooSuperCategory.

Because all these variables declared in this section are globally accessible, they should
have unique and meaningful names. (With the naming schema (#item_FullNameSchema)
for dataset definition section, the configuration name is its final, unique variable name if
the optional full name is not given.)

A sample configuration section for dataset definition is shown below:

[Dataset Definition]

// Fields defined for datasets

Fields = onOffRes cosT de mes hiEvtID loEvtID

// Definition for each field

onOffRes= RooCategory "on/off Ups(4S) resonance" 3 Unknown 0 OnRes 1 OffRes 2

cosT = RooRealVar "cosT" 0 1. B(100)

de = RooRealVar "#Delta E" -0.01 0.08 B(45) "GeV"

mes = RooRealVar "M_{es}" 5.20 5.29 B(45) "GeV"

12 RooRarFit

kltype = RooCategory "kltype" 3 emc 0 ifr 1 both 2

hiEvtID = RooStringVar "TS upperID"

loEvtID = RooStringVar "TS lowerID"

Since many configuration files (for the same analysis or similar analyses) may share the
same dataset definition section, it is advisable to put the contents of this section into a
separate configuration file and include that file into this section. For example,

[Dataset Definition]

// The actual configuration items (shown in the previous example) are in dsd.config

include dsd.config

This setting also makes the main configuration file more concise.

All these RooAbsArg variables are created using rarConfig::createAbsVar
(#item_rarConfig).

• General rules to create variable
A variable (can be any sub-class of RooAbsArg) can be used as observable (as in
dataset), or parameter (as pdf parameter). In RooRarFit, all those variables are
defined with the same syntax. It is also supposed that any created variable belongs to
some RooRarFit object, which is instantiated from any sub-classes of rarConfig. So
by default the name of variable is the concatenation of its configuration item name
and the name of its owning RooRarFit object. For example, if the configuration is
myVar = <RooRealVar output>, and the object creates this variable is myPdf, then
the name of the created RooRealVar will be myPdf_myVar. This default behavior can
be changed by explicitly giving a name as the first argument of the variable
configuration item. For example, if the configuration is myVar = myVarName ..., the
name of the RooRealVar will be myVarName. The next argument is the type of
the variable, RooRealVar (optional), RooConstVar, RooUnblindOffset,
RooUnblindPrecision, RooCategory, RooMappedCategory, RooThresholdCategory,
RooSuperCategory, RooStringVar, or RooFormulaVar. The next argument is the
title of the variable. If the definition has its own name as the first argument, the final
title is the one in the configuration string, if the variable does not have name as the
first argument, the final title will be the concatenation of title defined here and the
title of its owning RooRarFit object. Please make sure the title is meaningful and
concise, because it will be printed as label if the variable (as pdf parameter) is in a
plot. So special character in ROOT for LaTex output will be preferred to get better
output. The number and format of the remaining arguments depend on the type of
the variable and how it will be created.

To refer a variable to an existing variable, just give the existing variable’s name as the
only argument in the configuration entry:

myVar = the_Existing_Var

Unless the_Existing_Var is defined within the same section of myVar,
the_Existing_Var should be a full name.

• Syntax to create RooRealVar (preferred)

• <varConfigName> = [[N] <finalName>] [[T] "<varTitle>"] [[U]

"<unit>"] <RooRealVar Output Format>

You can specify optional <finalName>, "<varTitle>", or "<unit>", or you can
have the RooRealVar output stream as the only part. This way of defining

Chapter 2: RooRarFit Configuration 13

RooRealVar is preferable for PDF parameters. If the order of name, title and
unit is not the same as default, you need to precede them with N, T, or U to
specify which is which.

• Syntax to create RooRealVar

• <varConfigName> = [<finalName>] RooRealVar <varTitle> [C] <val>

<min> <max> B(<nBin>) "<unit>"

• <varConfigName> = [<finalName>] RooRealVar <varTitle> [C] <val>

<min> <max> B(<nBin>)

• <varConfigName> = [<finalName>] RooRealVar <varTitle> [C] <val>

<min> <max> "<unit>"

• <varConfigName> = [<finalName>] RooRealVar <varTitle> [C] <min>

<max> B(<nBin>) "<unit>"

• <varConfigName> = [<finalName>] RooRealVar <varTitle> [C] <min>

<max> B(<nBin>)

• <varConfigName> = [<finalName>] RooRealVar <varTitle> [C] <min>

<max> "<unit>"

• <varConfigName> = [<finalName>] RooRealVar <varTitle> [C] <val>

<min> <max>

• <varConfigName> = [<finalName>] RooRealVar <varTitle> [C] <min>

<max>

• <varConfigName> = [<finalName>] RooRealVar <varTitle> [C] <val>

"<unit>"

• <varConfigName> = [<finalName>] RooRealVar <varTitle> [C] <val>

The meaning of all the fields are pretty straightforward. If the optional C is spec-
ified, the variable will be set to constant after it is created. B(<nBin>) defines
the binning of this variable when it is plotted. Once <finalName> is given, the
variable name will be set to it. Make sure that this <finalName> is unique glob-
ally, because createAbsVar will not create a variable twice with the same name,
instead it returns a pointer to the already created variable.

• Syntax to create RooConstVar

• <varConfigName> = [<finalName>] RooConstVar <varTitle> <val>

• Syntax to create RooUnblindOffset

• <varConfigName> = [<finalName>] RooUnblindOffset "<varTitle>"

"<blindString>" <scale> <blindValue>

• <varConfigName> = [<finalName>] RooUnblindOffset "<varTitle>"

"<blindString>" <scale> <blindValue> <blindState>

<blindValue> is the RooAbsReal variable to blind, <blindState> is a RooAbsCategory
to specify the blind state.

• Syntax to create RooUnblindPrecision

• <varConfigName> = [<finalName>] RooUnblindPrecision "<varTitle>"

"<blindString>" <centralValue> <scale> <blindValue> <sin2betaMode>

14 RooRarFit

• <varConfigName> = [<finalName>] RooUnblindPrecision "<varTitle>"

"<blindString>" <centralValue> <scale> <blindValue> <blindState>

<sin2betaMode>

<blindValue> is the RooAbsReal variable to blind, <blindState> is a RooAbsCategory
to specify the blind state, <sin2betaMode> is a boolean (kTRUE or kFALSE).

• Syntax to create RooCategory

• <catConfigName> = [<finalName>] RooCategory <catTitle> useIdx

<Name1> <Idx1> <Name2> <Idx2> ...

• <catConfigName> = [<finalName>] RooCategory <catTitle> noIdx

<Name1> <Name2> ...

In the first form, useIdx is set, tokens following it are category type and index pairs.
In the second form, noIdx is set, all tokens following it are category types and the
indices are set to default values.

• Syntax to create RooMappedCategory

• <catConfigName> = [<finalName>] RooMappedCategory <catTitle> useIdx

<inputCat> <defaultCatName> <defaultCatIdx> <inKeyRegExp1>

<outKeyName1> <outKeyNum1> ...

• <catConfigName> = [<finalName>] RooMappedCategory <catTitle> noIdx

<inputCat> <defaultCatName> <inKeyRegExp1> <outKeyName1> ...

In the first form, useIdx is set, all the indices for mapped category types should be
given explicitly. In the second form, noIdx is set, all the indices are set to default
values.

• Syntax to create RooThresholdCategory

• <catConfigName> = [<finalName>] RooThresholdCategory <catTitle>

useIdx <inputVar> <defaultCatName> <defaultCatIdx> <upperLimit1>

<catName1> <catIdx1> ...

• <catConfigName> = [<finalName>] RooThresholdCategory <catTitle>

noIdx <inputVar> <defaultCatName> <upperLimit1> <catName1> ...

In the first form, useIdx is set, all the indices for threshold category types should be
given explicitly. In the second form, noIdx is set, all the indices are set to default
values.

• Syntax to create RooSuperCategory

• <catConfigName> = [<finalName>] RooSuperCategory <catTitle>

<inputCat1> <inputCat2> ...

It creates RooSuperCategory based on input cats. All the indices are set to default
values.

• Syntax to create RooStringVar

• <varConfigName> = [<finalName>] RooStringVar <varTitle> ["<val>"]

"<val>" is the optional initial string for the variable. If not specified, string “” (empty
string) will be used.

• Syntax to create RooFormulaVar

Chapter 2: RooRarFit Configuration 15

• <varConfigName> = [<finalName>] RooFormulaVar <formulaString>

[<depVar0> <depVar1> ...] [<min>] [<max>]

The title field here is actually the formula string. Depending on the actual form of the
formula, there could be some variables following <formulaString>. Those <depVarX>s
can be any RooAbsReal variables defined within the same configuration section or
elsewhere. If the RooFormulaVar can have ‘fundamental’ RooRealVar, for example, as
in dataset definition section, optional variable range limits can be specified.

2.1.2 Dataset Input Section

The container of all datasets, an object of class rarDatasets (#item_rarDatasets), is instan-
tiated by main function of the program, and its configuration section, [Dataset Input],
can be changed by command line option, -D "<data input section name>".

• dsdSec = <dataset definition section>

This configuration specifies the name of the dataset definition section. If not specified,
the default name is [Dataset Definition].

• Datasets = <data01> ... <dataN>

• <data01> = <dataset creation string>

• ...

• <dataN> = <dataset creation string>

Datasets specifies all the datasets need to be configured. This configuration is required
for this configuration section. You can also put this config, Datasets, into individual
action sections, in which case it will override the one specified here. This is useful when
you want to have different datasets for different actions.

Configs named <data01>, ..., <dataN>, are the definitions of all the datasets declared
with Datasets. In fact, each declared dataset should have its definition. There are
five ways to create a dataset, all of which are implemented in rarConfig::createDataSet
(#item_rarConfig).

1. Create dataset from ascii data file

• <dsName> = ascii "<dataset Title>" "<dataSetFileName>"

[<options>] ["<Common Path>"] [<indexCatName>]

The meaning of all the fields are pretty straightforward. The
order of the columns in ascii file should match that of Fields in
dataset definition section, See Section 2.1.1 [Dataset Definition],
page 11. Optional <options> will be passed to RooDataSet::read
(http://root.cern.ch/root/html/RooDataSet.html#RooDataSet:read) and
value of ‘Q’ will suppress warning messages. If "<Common Path>" is specified,
"<dataSetFileName>" can be a string of several dataset file names separated by
comma. I have not found how to use <indexCatName>, but it is there just in case
somebody knows howto and wants to use it.

2. Create dataset from root data file

• <dsName> = root "<dataset Title>" "<dataSetFileName>"

"<ntupleID>" ["<optional Cuts>"]

The meaning of all the fields are pretty straightforward.

16 RooRarFit

3. Create dataset by addition

• <dsName> = add "<dataset Title>" <dsSrcName1> <#Evt1>

[<dsSrcName2> <#Evt2> ...]

This method will extract randomly specific number of events (<#Evt1>, <#Evt2>,
...) from datasets, <dsSrcName1>, <dsSrcName2>, ..., which have already been
configured. <#EvtX> can be any number greater than or equal to 1, which means
<#EvtX> events (no more than the number of entries in the dataset) will be
selected randomly; or it can be a number between 0 and 1, which means
<#EvtX>•<datasetEntries> events will be selected; or it can be 0, which means
the full dataset will be selected.

4. Create dataset by reduction

• <dsName> = reduce "<dataset Title>" <dsSrcName> "<cuts>"

The new dataset <dsName> will be created from dataset <dsSrcName> with
"<cuts>" applied.

5. Create RooDataHist

• <dsName> = hist "<dataset Title>" <dsSrcName>

The new dataset <dsName> will be created from dataset <dsSrcName> as
RooDataHist (http://root.cern.ch/root/html/RooDataHist.html)

• setWeightVar = <no|[varName] dsName11 ... varName1 dsName21 ...

varName2>

This optional configuration specifies if to use weight in datasets. If not specified, the
default is no, not to use weight. If the first optional token is a RooRealVar in datasets,
it will be the default weight variable unless further tokens give more specifications.
You can use the remaining tokens to give more specific instructions. The format is
dataset names followed by weight variable name. If the first token (optional) is not
weight variable name, only those datasets specified explicitly are weighted.

• tabulateDatasets = <no|yes>

This optional configuration specifies if to tabulate datasets. If it is set to yes (default
no), a 1D table will be printed out against each category for each dataset.

• computeCorrelations = <yes|no|dataSetName1 dataSetName2 ...>

This optional configuration specifies if to compute correlation matrix for datasets. A
correlation table will be printed out for each dataset unless it is set to no (default yes).
Or you can explicitly give a list of dataset names.

• ub_<datasetName> = <ubToken1> <ubToken2>...

Any fitting action except pdfFit and toyStudy on a dataset requires that dataset to
be “unblinded”, which means this configuration is set to valid “tokens”. The token
will be given when you try to do the fitting action. Please follow the instruction given
by the fitter. Unblinding dataset does not necessarily unblind your results, as long as
you use RooUnblindPrecision or RooUnblindOffset and the state is set to blind, those
variables they try to blind still remain blind.

A sample configuration section for dataset input is shown below:

[Dataset Input]

// Specify dataset definition section

Chapter 2: RooRarFit Configuration 17

dsdSec = Dataset Definition

// Specify datasets to be defined

Datasets = sigMC bkgMC onData gsbData desbData simData

// Definition for each dataset

sigMC = ascii "sig MC Data" "omega/dat/omegaks_SIGMC.text" Q // quiet mode

bkgMC = ascii "tot bkg MC Data" "omega/dat/omegaks_BKGMC.text" Q

onData = ascii "onpeak Data" "omega/dat/omegaks_ONPEAK.text" Q

gsbData = reduce "gsd Data" onData "mes<5.27"

desbData = reduce "de sb Data" onData "(de<-.1)||(de>.1)"

simData = add "simulated Data" sigMC 0.0113 bkgMC 6000

2.2 PDF Definition Configuration

All PDFs are created from top to bottom with the rarMLFitter object as starting point,
and each PDF has its own configuration section. The name of PDF is global which means
you can not create a PDF with the same name twice, and the actual PDF creator, rar-
Config::createPdf (#item_rarConfig), will return the pointer to the already created PDF
instead.

If the name of a RooRarFit PDF is myPdfName, the configuration section for that PDF
is [myPdfName Config], and the name of the actual RooFit PDF is the_myPdfName.

In the following sub-sections, we will list configurations for each RooRarFit PDF. Unless
explicitly stated, most of these configurations are NOT mandatory. If the configurations are
to define default observables of RooRarFit PDF, those configurations are usually mandatory.

2.2.1 Configs Common to All RooRarFit PDFs

There are some configs in PDF config section which are common to all RooRarFit PDFs.

• configStr = <pdfType> ["<pdf Title>"]

This config specifies the type of the PDF and also gives optional PDF title. Every
PDF, except rarMLFitter, which is created by main, should have this config.

• paramSec_<pdfType> = "<param Config Section>"

• paramSec = "<param Config Section>"

With these two configs, any other configs except configStr can be put into another
config section specified. paramSec_<pdfType> has higher priority than paramSec. This
is a convenient feature if you want to reuse configs of other PDF config section.

• xtraGenerators = <generator1> [<generator2> ...]

This config specifies names of PDF for observables which usually have no distribu-
tion information in fit models. PDFs specified here will be used to generate those
observables.

• protDataVars = [<obs1> ...]

This config specifies names of observables which usually have no distribution informa-
tion in PDF models, so their distributions are given by prototype dataset in toy studies.
It is advisable to have such observables added here in their own PDF section instead
of action section, so that your protDataVars can change dynamically. The name of

18 RooRarFit

observable can be local name if it is observable in this PDF, or it should be that in
datasets.

• conditionalObs = [<obs1> ...]

This config specifies names of observables which usually have no distribution informa-
tion in PDF models, and should be taken out of normalization for fit. It is advisable to
have such observables added here in their own PDF section instead of action section,
so that your conditionalObs can change dynamically. The name of observable can be
local name if it is observable in this PDF, or it should be that in datasets.

Please use config protDataVars if possible because fit with this config
(conditionalObs) is very slow.

• protDataEVars = [<obs1> ...]

This config specifies names of observables the distributions of which you want to get
from prototype dataset for Embedded events in toy studies. For example, the signal
source data are usually from signal MC, but you certainly want the MC/realData bit
in the embedded event set to real data as in your prototype dataset. It is advisable to
have such observables added here in their own PDF section instead of action section,
so that your protDataEVars can change dynamically. The name of observable can be
local name if it is observable in this PDF, or it should be that in datasets.

Please notice you do NOT need this config (protDataEVars) for most observables even
if you do not have PDF to describe the distributions of them, in which case you should
use config protDataVars. protDataEVars is for special case to embed events so that
category/tag bit will be set to the right value even the sources are not from the right
ones, for example, embed events from MC sample, and you have a category in the fit
that requires real data type, then you have to replace the category type of MC with
type real data.

• fitData = <datasetName> ["<optional cut string>"]

This config specifies the default dataset for this PDF to do pdfFit, or other relevant
operation. When not specified, the default dataset will be set to that of the PDF which
creates this PDF. You can give this config an optional string as the second token, which
will be applied to the dataset for additional cuts.

• xtraPdfs = <xtraPdfName1> [<xtraPdfName2> ...]

This config specifies extra PDFs associated with this RooRarFit PDF. Extra PDFs
are created for purposes like getting parameters for other PDFs in final PDF, etc.
<xtraPdfName1>, ..., are the names of those extra RooRarFit PDFs to be created.

• pdfFit = <yes|no|simFit|simFitOnly>

Do pdfFit in pdfFit action for this PDF (default yes). If this config is set to simFit

and the final PDF model is Simultaneous PDF, RooSimultaneous PDF built for
this PDF will also be fit to the default dataset. (See example in KsKsKl.config
(http://rarfit.sourceforge.net/Sample_configs/KsKsKl.config)). If this con-
fig is set to simFitOnly, the prototype PDF will not be fitted.

• firstFitOnly = <yes|no>

pdfFit action is done for the first time only as the PDF is created (default). If set
to no, pdfFit will be done every time it is referred to and results from the last fit are
effective.

Chapter 2: RooRarFit Configuration 19

• fitRange_<obsName> = <Min> <Max>

It sets pdfFit ranges for observable <obsName>. If not specified, the range will be set
to the full ranges when it is created.

• pdfPlot = <yes|no>

Do pdfPlot in pdfFit action for this PDF (default yes). For how to disable plotting
for one variable in a PDF, see next item.

• plotBins_<obsName> = <nBins>

It sets plot bins for observable <obsName>. If not specified, the number of plot bins is
set to the value when the observable is created (B(<nBins>)); if set to -1, the plot of
this var is disabled.

• plotRange_<obsName> = <Min> <Max>

It sets plot ranges for observable <obsName>. If not specified, the range will be set to
the full ranges when it is created.

• projWData_<obsName> = <no|yes|dataName>

It specifies reference dataset of observable <obsName> for its PDF plotting. The default
is no, no reference dataset, which is true for most of PDF plotting. For some type of
PDF, however, you need to set this reference dataset, because that PDF does not
have the distribution information of other observables in it. For example, in dt PDF
for background, there is no distribution information for dtErr usually, so when it is
integrated over dtErr to get the plot of dt, the fitter will assume flat distribution of
dtErr and then you will not get the right plot. If you set the config to yes, the default
dataset for the PDF will be used, or you can explicitly give a dataset name to the
config.

• compsOnPlot = <no|yes>

This config controls when the RooFit PDF is composite, if its component PDF need to
be plotted. The default is no for rarBasePdf, but sub RooRarFit PDFs can override it,
for example in rarTwoGauss, the default is yes. Anyway, you can always set desirable
value by yourself using this config.

• compsDataOnPlot = <no|yes|refPdf>

This config specifies when the RooFit PDF is composite, and compsOnPlot is set to
yes, if the data points for each component are plotted (default no). If it is set to yes,
this PDF itself will be used as reference to plot each component’s data points; or you
can explicitly give a reference PDF name to the config.

• paramsOnPlot = <yes|no>

Params on PDF plot, default yes.

• chi2OnPlot = <yes|no|dof|nbin>

Chi-square on PDF plot, default yes. The number showing is chi square over DOF by
default, and you can set this config to nbin so chi square over number of bins will be
displayed.

• plotWCat_<obs> = <no|CatName1...>

• plotWCat = <no|CatName1...>

pdfPlot will also be done for each type of the cats specified here (default no).

• prePdfFix = <paramName1> [va1] [<paramName2> [val2] ...]

This config specifies parameters to be fixed before pdfFit. It is useful when those pa-
rameters have already been determined and you do not want them to float in pdfFit for

20 RooRarFit

THIS PDF config section only. It will not change the attributions of those parameters
they will be floated or fixed in the parameter files, or in mlFit, etc. The name should
be full name if the parameter is not defined in the same section; the name can also be
name of the PDF itself, or its component PDFs. If the name is a PDF name, all the
direct parameters of that PDF will be included. If the name is parameter name and the
next argument is a number, that parameter will be set to that value and fixed. After
pdfFit, parameter values will remain the same as you specify here, and their constant
properties will be restored.

Please notice that if a PDF name is specified, only its direct parameters will be included,
ie, if it is composite PDF, you need to specify its components’ PDF names or parameters
to include parameters from its components, otherwise parameters from component
PDFs will NOT be fixed.

• prePdfFloat = <paramName1> [<paramName2> ...]

This config specifies parameters to be floated before pdfFit. It is usually unnecessary
because parameters for PDF are usually defined as floating ones, but if it is more
convenient to declare parameters as constant, and if it is needed, use this config to
float those parameters in PDF fit. The name should be full name if the parameter is
not defined in the same section; the name can also be name of the PDF itself, or its
component PDFs. If the name is a PDF name, all the direct parameters of that PDF
will be included.

Both prePdfFix and prePdfFloat affect ONLY the PDF where they are immediately
at. If they are in a sub-PDF and this PDF is part of a total PDF, you need to have
prePdfFix or prePdfFloat in the total PDF if you want to fix/float those parameters
in the total PDF.

• postPdfFloat = <paramName1> [<paramName2> ...]

This config specifies parameters to be floated after pdfFit. The name should be full
name if it is not defined in the same section, and it can be the name of the PDF itself.
If the name is a PDF name, all the direct parameters of that PDF will be included.

This config can be put into action section so it works at per action basis.

• preMLFix = <paramName1> [<paramName2> ...]

This config specifies parameters to be fixed before all actions except pdfFit. The name
should be full name if it is not defined in the same section, and it can be the name of
the PDF itself. If the name is a PDF name, all the direct parameters of that PDF will
be included. It is used to undo postPdfFloat.

This config can be put into action section so it works at per action basis.

• preMLFloat = <paramName1> [<paramName2> ...]

This config specifies parameters to be floated before all actions except pdfFit. The
name should be full name if it is not defined in the same section, and it can be the
name of the PDF itself. If the name is a PDF name, all the direct parameters of that
PDF will be included. It is used to expand postPdfFloat.

This config can be put into action section so it works at per action basis.

• Ignored = <paramName1> [<paramName2> ...]

This config specifies parameters to be ignored after actions, which means those param-
eters will not be output to parameter files. This is useful when you do not want the
fitter to override parameter initial values. The name should be full name if it is not

Chapter 2: RooRarFit Configuration 21

defined in the same section, and it can be the name of the PDF itself. If the name is
a PDF name, all the direct parameters of that PDF will be ignored.

2.2.2 rarMLFitter Configs

The final mlFitter, an object of class rarMLFitter, is instantiated by main function of the
program, and its config section, [mlFitter Config], can be changed by command line
option, -C "<mlFitter config section>". This is the master PDF config section, the
configs of which might affect all other PDF sections.

• fullNameSchema = <prefix|suffix|self>

This config specifies how the full name of a variable, if not given, is generated. This
config affects all RooRarFit PDFs. The default is prefix which creates full name by
prepending name of the creating pdf to the variable config name; suffix creates full
name by appending the pdf name to the variable config name; self sets the full name
as the variable config name. self should not be used for PDF, and it is the default
method for rarDatasetDef because any variable created in dataset definition section
should be unique by itself.

This config is fixed to prefix and no change is permitted.

• outParamOrder = <ascend|descend|unsorted>

It controls how the final output params are sorted. The order, based on param names,
could be ascending (ascend, default), descending (descend), or in the original order
as they are created (unsorted).

• useNumCPU = <1-8>

The number of CPUs (cores) to be used in the ML fits. The fitter will try to parallelise
the fit over the available cores. (default 1).

• Comps = <compPdfName1> [<compPdfName2> ...]

This config specifies prototype pdf models for mlFitter. If the final mlFitter is not
simultaneous pdf, only the first component is used. This config is mandatory for any
pdf inherited from rarCompBase.

• simultaneousFit = <no|yes>

This config specifies if the final mlFitter is SimPdf built by RooSimPdfBuilder or
not (default no). If set to yes, you need to have configs for RooSimPdfBuilder to
get the SimPdf built. Detailed info on how to use these configs can be found from
RooSimPdfBuilder online document.

Essentially, the splitting can be done manually by fitting on to separate sub-datasets
for individual categories. So for each category, the yields, nSig, nBkg, etc. need to be
split, which means for n number of category types, there should be n sub-yields. To
get the total yield, just sum up all these values. It is then convenient to have the total
yield, and n-1 sub-yield fractions as free parameters:

subY1=Ntot*(1-frac2...-fracn),

subY2=Ntot*frac2,

...

subYn=Ntot*fracn.

That is the basic idea for the coeffs splitting of the extended AddPdf, rarMLPdf. For
each category, you will need similar splitting settings.

22 RooRarFit

• yieldSplitMethod = <auto|manual>

If this config is set to manual, the user has full control over yield splitting. He can
choose to split directly on yields, or to construct the yield with RooFormulaVar, and
split the formula variables, etc. It is not recommended unless the other two methods
do not meet your needs, and you know exactly what to do to achieve your goals.

Since it is a quite complicated issue to split yield for each category, you’d better let
the fitter do it for you. The other two options are for this purpose. In either case,
as stated in previous item, for every splitting category, the yield variable multiplies a
splitting fraction variable. For example, if runBlock is one of the splitting categories,
for signal yield, the variable will be automatically re-defined to nSig*fracRunBlock,
where nSig is the final yield, and fracRunBlock is the automatically created splitting
fraction variable for runBlock. If there are four run blocks, fracRunBlock will be split
into four variables for the four run blocks. If nSig is the signal yield name, runBlock
is run block category name, and four category types are run1, run2, run3, and run4,
the name of fracRunBlock will be Frac_nSig_runBlock, and the four split variables
are

Frac_nSig_runBlock_run1,

Frac_nSig_runBlock_run2,

Frac_nSig_runBlock_run3,

Frac_nSig_runBlock_run4.

You can give, for example, Frac_nSig_runBlock, a different name, or even assign it to
an existing var, by explicitly giving its definition in this section, like

Frac_nSig_runBlock = e_run_sig 1 C L(0 - 1)

and the four split variables are then

e_run_sig_run1,

e_run_sig_run2,

e_run_sig_run3,

e_run_sig_run4.

If yieldSplitMethod is set to auto (default), RooFit will impose unity constraint on
the fractions if you specify the cat type in square bracket for those fractions. For each
yield and splitting category pair, you have to specify the non-free cat type in square
bracket; otherwise the fitter will abort once it detects such situation.

• fracRule = <catGroup1>...

• fracRule_<yieldName> = <catGroup1>...

By default, each yield has separate splitting fraction for each category, but in some
cases, for example, if fractions for two categories are correlated, it might be desirable to
split more than one category together. For example, if you want to split (double-split)
runBlock and tagCat together for nSig, split tagCat and XCat together for nChmls,
you can have

fracRule_nSig = "runBlock tagCat" XCat

fracRule_nChmls = runBlock "tagCat XCat"

For runBlock tagCat combined splitting, you will have
Frac_nSig_runBlock_tagCat as the splitting fraction var, and the split vars will be
Frac_nSig_runBlock_tagCat_{Run1;04T0}, etc.

Chapter 2: RooRarFit Configuration 23

• fracSrc = <datasetName>

• fracSrc_<yieldName> = <datasetName>

• fracSrc_<yieldName>_<catName> = <datasetName>

These configs specify, when yieldSplitMethod is auto, the source for splitting
fractions. The default source is fitData. fracSrc, if specified, is for all yields, and
all cats; fracSrc_<yieldName>, if specified, is for all cats of yield yieldName;
fracSrc_<yieldName>_<catName>, if specified, is for cat catName of yield
yieldName. Those configs can be put into actions so they can be on per action basis.

• splitSpecials = [fullNamed] <specialVar1> [<specialVar2>...]

• <specialVar1> = AbsReal Def

• <specialVar2> = AbsReal Def

• ...

This config specifies names and definitions of specializations for splitting. If you
want to set a specific value for a split variable, or to give it a different definition
than RooRealVar, you can add that split variable into this config. If the first arg is
fullNamed, all the following configs are supposed to be full names.

After pdf has been created from top to bottom, action section will be invoked to finish
fitting jobs. Intermediate fitting results will be saved for later uses. It is crucial for each
action to get desired initial values from the right param files. So the fitter is designed to
have param file name for each fitter, action, etc., generated automatically. User can specify
param file creation rules and refer to the destination param file by the rules. For each action,
there are configs to specify IO param files. You can also have those param file configs in
the master section, which will override those in action section.

• postPdfWriteParams = <notSet|no|yes|paramFileID>

If specified, it will override postPdfWriteParams of pdfFit action for this master sec-
tion.

• preMLReadParams = <notSet|no|yes|paramFileID>

If specified, it will override preMLReadParams of mlFit action for this master section.

• postMLWriteParams = <notSet|no|yes|paramFileID>

If specified, it will override postMLWriteParams of mlFit action for this master section.

• preToyReadParams = <notSet|no|yes|paramFileID>

If specified, it will override preToyReadParams of toyStudy action for this master sec-
tion.

• toyDataFilePrefix = <notSet|toySampleNameID>

If specified, it will override toyDataFilePrefix of toyStudy action for this master
section.

• preProjPlotReadParams = <notSet|no|yes|paramFileID>

If specified, it will override preProjPlotReadParams of projPlot action for this master
section.

• preContourPlotReadParams = <notSet|no|yes|paramFileID>

If specified, it will override preContourPlotReadParams of contourPlot action for this
master section.

• preSPlotReadParams = <notSet|no|yes|paramFileID>

If specified, it will override preSPlotReadParams of sPlot action for this master section.

24 RooRarFit

• <paramFileID> or <toySampleNameID> specifications
It can have one or more of the following pairs to specify the param/toysample.

• F "<configFileName>"

The naming rules depending on config file name will be changed to the value
specified here. The default value is the name of this job’s config file.

• D "<datasetInputSecName>"

The naming rules depending on dataset input section name will be changed to
the value specified here. The default value is the name of this job’s dataset input
section.

• C "<masterPdfSecName>"

The naming rules depending on master pdf config section name will be changed
to the value specified here. The default value is the name of this job’s master pdf
config section.

• A "<actionTypeName>"

The naming rules depending on action type name will be changed to the value
specified here. The action types include pdfFit and mlFit for intermediate param
file. You can use arbitrary name, and you just need to refer to the same name
accordingly.

• N "<conceptualParamFileName>"

The naming rules depending on conceptual param file name will be changed to
the value specified here. There is no default abstract name for intermediate param
file. You can use arbitrary name here, and you just need to refer to the same name
accordingly.

• mlFitData = <datasetName> ["<optional cut string>"]

If specified, it will override mlFitData of mlFit action for this master section.

• projPlotData_<obs> = <datasetName> ["<optional cut string>"]

• projPlotData = <datasetName> ["<optional cut string>"]

If specified, it will override projPlotData or projPlotData_<obs> of projPlot action
for this master section.

• scanPlotData = <datasetName>

If specified, it will override scanPlotData of scanPlot action for this master section.

• sPlotData_<obs> = <datasetName> ["<optional cut string>"]

• sPlotData = <datasetName> ["<optional cut string>"]

If specified, it will override sPlotData or sPlotData_<obs> of sPlot action for this
master section.

An example is shown below:

[mlFitter Config]

Comps = yieldModel

fitData = onData

simultaneousFit = yes

// SimPdfBuilder configs

Chapter 2: RooRarFit Configuration 25

physModels = the_yieldModel // Please remember the RooFit pdf is created with a

// "the_" before the name of RooRarFit PDF object.

splitCats = kltype tagCat

protDataVars = kltype tagCat

the_yieldModel = kltype : sigma1_deSigTriGauss \\

kltype,tagCat : sigma2_deSigTriGauss, P01_esNN2SigPoly \\

kltype : Frac_nSig_kltype[ifr], Frac_nBkg_kltype[ifr] \\

tagCat : Frac_nSig_tagCat[04T0], Frac_nBkg_tagCat[04T0]

2.2.3 rarMLPdf Configs

rarMLPdf is an extended AddPdf, which serves as prototype pdf for final mlFitter if the final
mlFitter is SimPdf, or it will be the final mlFit model if the final mlFitter is not SimPdf.

• configStr = MLPdf ["<pdf Title>"]

This config specifies the pdf type is MLPdf. This config is required to have this pdf
configured as rarMLPdf.

• Comps = <compPdfName1> [<compPdfName2> ... <compPdfNameN>]

This config specifies components for rarMLPdf. The components usually consist of one
or more signal parts, one continuum background, any BB backgrounds, etc. This config
is mandatory for any pdf inherited from rarCompBase.

• Coeffs = [fullNamed] <coeff1> [<coeff2> ... <coeffN>]

This config specifies coefficients for all its components. Since this pdf is an extended
AddPdf, the number of coefficients should match that of components. If the first arg
is fullNamed, all the following configs are supposed to be full names. This config is
mandatory for any pdf inherited from rarAddPdf.

• <coeff1> = AbsReal Def

• ...

• <coeffN> = AbsReal Def

All the coeffs can be defined as RooRealVar or RooFormulaVar. See createVar (#item_
createVar) for more info on how to create those variables.

An example is shown below:

[yieldModel Config]

configStr=MLPdf "ml model"

Comps=SigPdf BkgPdf ChlsPdf

Coeffs=nSig nBkg nChls

nBkg =nBkg 6000 L(0 - 10000)

nSig =nSig 156 L(-10 - 500)

nChls=nChls 1300 L(0 - 3000)

2.2.4 rarMultPdf Configs

rarMultPdf is a wrapper of RooGenericPdf to build a special pdf to deal with different fit
ranges for multiple sub mode in simPdf fit.

• configStr = MultPdf ["<pdf Title>"]

This configuration specifies the pdf type is MultPdf. This configuration is required to
have this pdf configured as rarMultPdf.

26 RooRarFit

• Comps = <compPdfName1> [<compPdfName2> ... <compPdfNameN>]

This configuration specifies components for rarMultPdf, and is mandatory for any pdf
inherited from rarCompBase.

An example is shown below:

[mESigS Config]

configStr = MultPdf

Comps = mESig mEStep

[mESig Config]

configStr = TwoGauss

x = mEta

meanC = 0.540 L(0.52 - 0.58)

meanT = 0.530 L(0.52 - 0.58)

sigmaC = 0.012 L(0.0 - 0.02)

sigmaT = 0.030 L(0.0 - 0.1)

fracC = 0.65 L(0.0 - 1.0)

[mEStep Config]

configStr = Generic

x = mEta

formula = "@1 <= @0 && @0 <= @2" x mEStepLo mEStepHi

mEStepLo = mEStep_mEStepLo 0.485 C L(0 - 1.0)

mEStepHi = mEStep_mEStepHi 0.605 C L(0 - 1.0)

2.2.5 rarProd Configs

rarProd is a wrapper of RooProdPdf to build composite pdf as a product of PDFs.

• configStr = ProdPdf ["<pdf Title>"]

This config specifies the pdf type is ProdPdf. This config is required to have this pdf
configured as rarProd.

• Comps = <compPdfName1> [<compPdfName2> ... <compPdfNameN>]

This config specifies components for rarProd, and is mandatory for any pdf inherited
from rarCompBase.

• CondPdfs = [condPdf1] ...

This optional config specifies conditional PDFs for rarProd. The normalization of
PDFs sepcified here is on observables in config CondObss only.

• CondObss= [condObs1] ...

• CondObss_<condPdf> = [condObs1] ...

This optional config specifies conditional observables of conditional PDFs in CondPdfs.
Only observables listed here are included in the normalization calculation for condi-
tional PDFs. Each conditional PDF should have its own CondObss_<condPdf> config.
If config CondObss exits, the observables specified will be added to all condtional PDFs
in current product PDF.

• ndFit = <no|yes>

Do ndFit in pdfFit action if set to yes (default no). ndFit (n-dimensional fit) will fit
product pdf all together instead of fit individual components.

Chapter 2: RooRarFit Configuration 27

For rarProd with conditional PDFs, ndFit is set to yes.

An example is shown below:

[SigPdf Config]

configStr = ProdPdf "Signal Pdf"

Comps = deSig mesSig fisherSig mOmegaSig heliSig

fitData = sigMC

An example of multivariate PDF is shown below:

// The 2D PDF is defined in terms of P(h) and conditional PDF P(m|h)

// P(m,h)=P(m|h)*P(h)

[hm2D Config]

configStr = ProdPdf "P(m,h)"

Comps = hPdf mPdf

CondPdfs = mPdf

CondObss = m

fitData = sigMC

2.2.6 rarAdd Configs

rarAdd is a wrapper of RooAddPdf/RooAddModel to build composite pdf as a sum of PDFs.
There are N-1 free coefficients with N components, or N coefficients if the composite pdf is
extended. RooAddModel can only be non-extended pdf.

• configStr = AddPdf ["<pdf Title>"]

• configStr = AddModel ["<pdf Title>"]

This config specifies the pdf type is AddPdf/AddModel. This config is required to have
this pdf configured as rarAdd.

• Comps = <compPdfName1> [<compPdfName2> ... <compPdfNameN>]

This config specifies components for rarAdd, and is mandatory for any pdf inherited
from rarCompBase.

• Coeffs = [fullNamed] <coeff1> [<coeff2> ... <coeffM>]

This config specifies coefficients for all its components. If M is equal to N, it is extended,
or M should be N-1, which means the pdf created is not extended. If the first arg
is fullNamed, all the following configs are supposed to be full names. This config is
mandatory.

• <coeff1> = AbsReal Def

• ...

• <coeffM> = AbsReal Def

All the coeffs can be defined as RooRealVar or RooFormulaVar. See createVar (#item_
createVar) for more info on how to create those variables.

An example is shown below:

[fisBkg Config]

configStr = AddPdf "Add two Pdfs"

Comps = fisBkgC fisBkgT

Coeffs = fracC

fracC = T "f_{C}" 0.9 L(0 - 1.)

28 RooRarFit

2.2.7 rarSimPdf Configs

rarSimPdf uses RooSimPdfBuilder to build RooSimultaneous Pdf. This pdf can not be
used to build ML fitter model!

• configStr = Simultaneous ["<pdf Title>"]

This config specifies the pdf type is Simultaneous. This config is required to have this
pdf configured as rarSimPdf.

• Comps = <compPdfName1> [<compPdfName2> ... <compPdfNameN>]

This config specifies components for rarSimPdf, and is mandatory for any pdf inherited
from rarCompBase.

• physModels = <RooSimPdfBuilder config string>

This config specifies physics models.

• splitCats = <cat1>...

This config specifies splitting cats.

• the_<compPdfName1> = <splitting rules>

This config specifies splitting rules for each model.

2.2.8 rarArgusBG Configs

rarArgusBG is a wrapper of RooArgusBG to build ArgusBG PDF. This distribution was first
used by the Argus experiment to descibe the combinatorial background.

• configStr = ArgusBG ["<pdf Title>"]

This config specifies the pdf type is ArgusBG. This config is required to have this pdf
configured as rarArgusBG.

• x = AbsReal Def

• max = AbsReal Def

• c = AbsReal Def

• pow = AbsReal Def

x is the default observable of the pdf. max is the end point of the pdf, usually a constant.
c is the slope parameter of the pdf. pow is the power of the multiplying term (normally
1/2). All the variables can be defined as RooRealVar or RooFormulaVar. See createVar
(#item_createVar) for more info on how to create those variables.

An example is shown below:

[mesBkg Config]

fitData = desbData

configStr = ArgusBG

x = mes

max = 5.29 C

c = -20 L(-80 - -.1)

pow = 0.5 L(-3 - 3)

postPdfFloat = c

2.2.9 rarBallack Configs

rarBallack implements the Ballack function.

Chapter 2: RooRarFit Configuration 29

• configStr = Ballack ["<pdf Title>"]

This config specifies the pdf type is Ballack. This config is required to have this pdf
configured as rarBallack.

• x = AbsReal Def

• mean = AbsReal Def

• width = AbsReal Def

• tail = AbsReal Def

• alpha = AbsReal Def

• n = AbsReal Def

x is the default observable of the pdf. mean is the mean. width is the width. tail is the
tail. alpha is the expoential. n is the power.

All the variables can be defined as RooRealVar or RooFormulaVar. See createVar
(#item_createVar) for more info on how to create those variables.

An example is shown below:

[mSig Config]

configStr = Ballack

x = de

mean = 0 L (-1 - 1)

sigma = 0.003 L(0 - .01)

alpha = -2 L(-5 - 0)

n = 1 L(0 - 10)

2.2.10 rarBinned Configs

rarBinned implements a binned function.

• configStr = Binned ["<pdf Title>"]

This config specifies the pdf type is Binned. This config is required to have this pdf
configured as rarBinned.

• x = AbsReal Def

• nbins = AbsReal Def

• limits = AbsReal Def

x is the default observable of the pdf. nbins is the number of bins of the binned function.
limits is a list on nbins+1 setting the bounds of those bins. H00... are the nbins+1 free
parameters of the binned function. All the variables can be defined as RooRealVar or
RooFormulaVar. See createVar (#item_createVar) for more info on how to create those
variables.

An example is shown below:

[mSig Config]

configStr = Binned

x = de

nbins = 3

limits = 0.0 2.0 4.0 5.0

H00 = 5 L (0.0 - 1.0)

30 RooRarFit

2.2.11 rarCruijff Configs

rarCruijff implements a Cruijff function.This distribution is similar to that of a Gaussian
with different widths above and below the mean together with a low and high exponential
tail.

• configStr = Cruijff ["<pdf Title>"]

This config specifies the pdf type is Cruijff. This config is required to have this pdf
configured as rarCruijff.

• x = AbsReal Def

• mean = AbsReal Def

• sigmaL = AbsReal Def

• sigmaR = AbsReal Def

• alphaL = AbsReal Def

• alphaR = AbsReal Def

x is the default observable of the pdf. mean is the mean. sigmaL is the left/low
width. sigmaR is the right/high width. alphaL is the left/low exponential tail. alphaR

is the right/high exponential tail. All the variables can be defined as RooRealVar or
RooFormulaVar. See createVar (#item_createVar) for more info on how to create those
variables.

An example is shown below:

[cruijffSig Config]

configStr = Cruijff

x = de

mean = 0 L (-1 - 1)

sigmaL = 0.003 L(0 - .01)

sigmaR = 0.004 L(0 - .01)

alphaL = 0.01 L(0 - 1)

alphaR = 0.02 L(0 - 1)

2.2.12 rarDecay Configs

rarDecay is a wrapper of RooBCPGenDecay/RooBDecay/RooDecay to build BCPGenDecay
/ BDecay / Decay Model. These are single or double sided decay functions that can be con-
volved with a resolution model such as GaussModel. Decay is an exponential decay; BDecay
models the decay of the B meson; BMixDecay includes mixing the decay; BCPGenDecay in-
cludes CP violation in the decay.

• configStr = BCPGenDecay ["<pdf Title>"]

• configStr = BDecay ["<pdf Title>"]

• configStr = Decay ["<pdf Title>"]

This config specifies the pdf type is BCPGenDecay, BDecay or Decay. This config is
required to have this pdf configured as rarDecay.

• x = RealVar Def

• tau = AbsReal Def

• model = <resolutionModelName>

Chapter 2: RooRarFit Configuration 31

• decayType = <typeName>

• dm = AbsReal Def

• dgamma = AbsReal Def

• tag = AbsCat Def

• w = AbsReal Def

• dw = AbsReal Def

• mu = AbsReal Def

• S = AbsReal Def

• C = AbsReal Def

• blindStatus = <blind|unblind>

• blindString = <unique blind string>

• blindValues = <Cvalue> <Cscale> <Svalue> <Sscale>

x is the default observable of the pdf. No derived dependent is allowed in rarDecay so
please make sure x is observable defined in datasets. tau is the average B0 lifetime. model
is the resolution model. decayType can be SingleSided, DoubleSided (default), Flipped.

For BCPGenDecay and BDecay, dm is the mixing frequency; dgamma is the difference in
B0/B0bar width; tag is the flavor tag category; w is the mistag rate; dw is the mistag rate
difference between B0/B0bar; mu is the difference in tagging efficiency between B0/B0bar;
S is CP sine parameter, and C CP cosine parameter, the CP asymmetry parameters The de-
fault blindStatus is blind, to unblind, blindStatus must be set to unblind. blindString
must be set to a unique string for blinding. blindValues specifies blinding values and scales
for C and S, (default .2 .2 .2 .2).

All the ‘AbsReal’ parameters can be defined as RooRealVar or RooFormulaVar, the ‘Ab-
sCat’ parameter can be defined as any RooAbsCategory. See createVar (#item_createVar)
for more info on how to create those variables.

An example is shown below:

[dtSig Config]

configStr = BCPGenDecay "CPV signal"

projWData_dt = yes

//pdfFit = no

//pdfPlot = no

x = dt

model = sigResModel

tag = tagFlav // tagging category

tau = dtSigTau 1.530 C L(0.5 - 2.5) // B0 lifetime

dm = dtSigDm 0.507 C L(0.2 - 1.0) // B0 mixing frequency

w = dtSigAmtr 0.2 C L(0.0 - 0.5) // mistag rate

dw = dtSigDmtr 0.02 C L(-2. - 2.0) // B0/B0bar mistag rate difference

mu = dtSigMu 0.0 C L(-2. - 2.0) // B0/B0bar tagging efficiency difference

C = 0.0 L(-3 - 3) // direct CP parameter

S = 0.7 L(-3 - 3) // indirect CP parameter

blindStatus = unblind

32 RooRarFit

blindString = Physicists do it vivace

blindValues = .2 .2 .2 .2

postPdfFloat = C S

[sigResModel Config]

configStr = TriGaussModel "CPV signal resolution model"

x = dt

meanC = dtSigBiasC "BiasC" -0.16 C L(-5 - +5)

sigmaC = dtSigScfaC "ScaleC" 0.732813 C L(.5 - 5)

meanT = dtSigBiasT "BiasT" -1.1140 C L(-5 - 0)

sigmaT = dtSigScfaT "ScaleT" 3.00 C L(.5 - 10)

meanO = dtSigBiasO "BiasO" 0. C

sigmaO = dtSigScfaO "ScaleO" 8. C

fracC = dtSigFracC "fC" 0.8888 C L(.5 - 1)

fracO = dtSigFracO "f0" 0.0033 C L(0. - 0.2)

msSF = dterr

protDataVars = dterr

xtraGenerators = dterrGen

2.2.13 rarBifurGauss Configs

rarBifurGauss is a wrapper of RooBifurGauss to build Bifurcated Gaussian PDF.

• configStr = BifurGauss ["<pdf Title>"]

• configStr = BGGauss ["<pdf Title>"]

This config specifies the pdf type is BifurGauss or BGGauss. This config is required to
have this pdf configured as rarBifurGauss.

• parSymLevel = <0|1|2|3>

• x = AbsReal Def

• peak = AbsReal Def

• sigL = AbsReal Def

• sigR = AbsReal Def

• mean = AbsReal Def

• rms = AbsReal Def

• asym = AbsReal Def

If parSymLevel = 0, use the default BifurGauss; mean, rms, and asym are not required.
If parSymLevel = 1, use lowest-order mapping; if = 2, keep O(A^2, A^3) terms also; if
= 3, take asym to mean 3rd moment. With parSymLevel > 0, mean, rms, and asym are
used; peak, sigL, and sigR are hard-coded to the corresponding RooFormulaVar. x is
the default observable of the pdf. Pdf type BifurGauss and BGGauss are interchange-
able, with the only difference being that if parSymLevel not specified, the default value
of it for BifurGauss is 0, while that for BGGauss is 1. All the AbsReal variables can
be defined as RooRealVar or RooFormulaVar. See createVar (#item_createVar) for
more info on how to create those variables.

An example is shown below:

[fisherSig Config]

Chapter 2: RooRarFit Configuration 33

configStr = BifurGauss

x = fisher

peak = -.5 L(-2 - 2)

sigL = .4 L(0 - 1)

sigR = .6 L(0 - 1)

[fisherSig Config]

configStr = BGGauss

x = fisher

mean = -.5 L(-2 - 2)

rms = .1 L(-0.5 - 0.5)

asym = .6 L(0 - 1)

2.2.14 rarCBShape Configs

rarCBShape is a wrapper of RooCBShape to build Crystal Ball lineshape PDF. It is a Gaus-
sian with an exponential tail.

• configStr = CBShape ["<pdf Title>"]

This config specifies the pdf type is CBShape. This config is required to have this pdf
configured as rarCBShape.

• x = AbsReal Def

• mean = AbsReal Def

• sigma = AbsReal Def

• alpha = AbsReal Def

• n = AbsReal Def

x is the default observable of the pdf. All the variables can be defined as RooRealVar
or RooFormulaVar. See createVar (#item_createVar) for more info on how to create
those variables.

An example is shown below:

[deSig Config]

configStr = CBShape

x = de

mean = 0 L(-.01 - .02)

sigma = 0.003 L(0 - .01)

alpha = -2 L(-5 - 0)

n = 1 L(0 - 10)

2.2.15 rarExp Configs

rarExp is a wrapper of RooExponential to build Exponential PDF.

• configStr = Exp ["<pdf Title>"]

This config specifies the pdf type is Exp. This config is required to have this pdf
configured as rarExp.

• x = AbsReal Def

• c = AbsReal Def

x is the default observable of the pdf. c is the exponent of the pdf. All the variables

34 RooRarFit

can be defined as RooRealVar or RooFormulaVar. See createVar (#item_createVar)
for more info on how to create those variables.

An example is shown below:

[esNN3Exp Config]

// the actual final pdf is exp(c*x*x)

configStr=Exp

x=RooFormulaVar "@0*@0" esNN3

c=36 L(0 - 100)

2.2.16 rarFlatte Configs

rarFlatte is a wrapper of RooFlatte to build a Flatte parameterisation PDF. This is
typically used in the decays of the a0(980) or f0(980) where the invariant mass distribution
of light scalar mesons near the K Kbar threshold. References: S.M.Flatte Phys. Rev. B63,
224 (1976); B.S.Zou and D.V.Bugg Phys Rev. D48, R3948 (1993); M.Ablikim wt al (BES
collaboration), Phys. Rev. D70, 092002, (2004)

• configStr = Flatte ["<pdf Title>"]

This config specifies the pdf type is Flatte. This config is required to have this pdf
configured as rarFlatte.

• x = AbsReal Def

• mean = AbsReal Def

• width = AbsReal Def

• g0 = AbsReal Def

• m0a = AbsReal Def

• m0b = AbsReal Def

• g1 = AbsReal Def

• m1a = AbsReal Def

• m1b = AbsReal Def

x is the default observable of the pdf. mean is the mean of the pdf. g0 is the square
of the coupling constant to the first decay channel. m0a and m0b are the masses of the
two final state particles in the first channel (e.g. f0(980) -> pi+ pi-). g1 is the square
of the coupling constant to the second decay channel. m1a and m1b are the masses of
the two final state particles in the second channel (e.g. f0(980) -> K+ K-). After being
defined, the masses are always held constant in the fit. The default values assume
that everything is defined in GeV; if using a different unit, ensure all variables are
rescaled. All the AbsReal variables can be defined as RooRealVar or RooFormulaVar.
See createVar (#item_createVar) for more info on how to create those variables.

An example is shown below:

[massSig Config]

configStr = Flatte "f0(980) K*"

x = mass // GeV

mean = 0.975 L(0.9 - 1.0) // GeV

g0 = 0.1108 L(0.02 - 1.0) // GeV

g1 = 0.4229 L(0.02 - 1.0) // GeV

Chapter 2: RooRarFit Configuration 35

m0a = 0.13957 C // pi+ mass

m0b = 0.13957 C // pi- mass

m1a = 0.49368 C // K+ mass

m1a = 0.49368 C // K- mass

2.2.17 rarGaussian Configs

rarGaussian is a wrapper of RooGaussian/RooBreitWigner/RooLandau to build Gaussian
/ Breit-Wigner / Landau PDF.

• configStr = Gaussian ["<pdf Title>"]

• configStr = BreitWigner ["<pdf Title>"]

• configStr = Landau ["<pdf Title>"]

This config specifies the pdf type is Gaussian, BreitWigner, or Landau This config is
required to have this pdf configured as rarGaussian.

• x = AbsReal Def

• mean = AbsReal Def

• sigma = AbsReal Def

• scale = AbsReal Def

• shift = AbsReal Def

x is the default observable of the pdf. mean is the mean of the pdf. sigma is the sigma
of the pdf. sigma will be scaled by the value of scale if specified; mean will be shifted
by the value of shift if specified. All the variables can be defined as RooRealVar

or RooFormulaVar. See createVar (#item_createVar) for more info on how to create
those variables.

An example is shown below:

[deSig Config]

configStr = BreitWigner

x = de

mean = 0 L(-.01 - 0.08)

sigma = 0.003 L(0 - .1)

[deSig Config]

configStr = Gaussian

x = de

mean = 0 L(-.01 - 0.08)

sigma = 0.003 L(0 - .1)

[dtErrSig Config]

configStr = Landau

x = dtErr

mean = .75 L(0 - 2.5)

sigma = .17 L(0 - .5)

2.2.18 rarGaussModel Configs

rarGaussModel is a wrapper of RooGaussModel to build Gaussian Resolution Model.

36 RooRarFit

• configStr = GaussModel ["<pdf Title>"]

This config specifies the pdf type is GaussModel. This config is required to have this
pdf configured as rarGaussModel.

• x = RealVar Def

• mean = AbsReal Def

• sigma = AbsReal Def

• msSF = AbsReal Def

• meanSF = AbsReal Def

• sigmaSF = AbsReal Def

x is the default observable of the pdf. No derived dependent is allowed in rarGauss-
Model so please make sure x is observable defined in datasets. msSF is the scale for
mean and sigma; meanSF is the scale for mean, and sigmaSF for sigma. One can choose
to specify msSF for both mean and sigma, or choose meanSF for mean, and/or sigmaSF
for sigma, or if none is chosen, the default values are 1. All the parameters can be
defined as RooRealVar or RooFormulaVar. See createVar (#item_createVar) for more
info on how to create those variables.

• FlatScaleFactorIntegral = <yes|no>

This optional config specifies to use FlatScaleFactorIntegral or not. The default is yes.
To disable FlatScaleFactorIntegral, this config must be set to no.

An example is shown below:

[dtSigModel Config]

configStr=GaussModel

x=dt

mean=-0.1715 L(-5 - +5)

sigma=1.0893 L(.5 - 5)

msSF=dtErr

2.2.19 rarGeneric Configs

rarGeneric is a wrapper of RooGenericPdf to build Generic PDF using string expression
and list of variables.

• configStr = Generic ["<pdf Title>"]

This config specifies the pdf type is Generic. This config is required to have this pdf
configured as rarGeneric.

• formula = "<formulaStr>" <var1> <var2> ...

formulaStr is the expression string as in RooFormulaVar. <var1>, <var2>, ..., are
the list of variables for the formula. All the variables can be defined as RooRealVar

or RooFormulaVar. See createVar (#item_createVar) for more info on how to create
those variables.

An example is shown below:

[esNN2Sig Config]

configStr = Generic

formula = "1.+exp(@1*@0)" esNN2 c

c = -3.294 L(-10 - -1)

Chapter 2: RooRarFit Configuration 37

2.2.20 rarGounarisSakurai Configs

rarGounarisSakurai is a wrapper of RooGounarisSakurai to build a Gounaris-Sakurai
pi-pi scattering PDF.

• configStr = GounarisSakurai ["<pdf Title>"]

This config specifies the pdf type is GounarisSakurai. This config is required to have
this pdf configured as rarGounarisSakurai.

• x = AbsReal Def

• mean = AbsReal Def

• width = AbsReal Def

• spin = AbsReal Def

• radius = AbsReal Def

• mass_a = AbsReal Def

• mass_b = AbsReal Def

x is the default observable of the pdf. mean is the mean of the pdf. width is the width
of the pdf. spin is the spin of the pdf (=0,1,2). Default is 1. After being defined, the
valus is always held constant in the fit. radius is the form factor radius of the pdf.
Default is 3.1/GeV. mass_a is the mass of first daughter of the decay. Default is the pi
mass. After being defined, the valus is always held constant in the fit. mass_b is the
mean of second daughter of the decay. Default is the pi mass. After being defined, the
values are always held constant in the fit. The default units is GeV; if a different uint
is used all the parameters must be suitably scaled. All the AbsReal variables can be
defined as RooRealVar or RooFormulaVar. See createVar (#item_createVar) for more
info on how to create those variables.

An example is shown below:

[massSig Config]

configStr = GounarisSakurai "#rho K*"

x = mass // GeV

mean = 0.790 L(0.7 - 0.9) // GeV

width = 0.15 L(0.0 - 1.0) // GeV

2.2.21 rarHistPdf Configs

rarHistPdf is a wrapper of RooHistPdf to build PDF using multidimensional histogram.

• configStr = HistPdf ["<pdf Title>"]

This config specifies the pdf type is HistPdf. This config is required to have this pdf
configured as rarHistPdf.

• obs = <obs1> <obs2> ...

Config obs lists all observables for this PDF, <obs1>, <obs2>, All the observables
can be defined as RooRealVar or RooFormulaVar. See createVar (#item_createVar)
for more info on how to create those variables.

An example is shown below:

[Sig Config]

configStr = HistPdf

obs = mes de

fitData = sigMC

38 RooRarFit

2.2.22 rarKeys Configs

rarKeys is a wrapper of RooKeysPdf/Roo2DKeysPdf to build 1/2D Keys PDF.

• configStr = Keys ["<pdf Title>"]

• configStr = 2DKeys ["<pdf Title>"]

This config specifies the pdf type is Keys or 2DKeys. This config is required to have
this pdf configured as rarKeys.

• x = AbsReal Def

• y = AbsReal Def

• rho = Double_t

• keysOption = Options

x and y (for 2D only) are the default observables of the pdf. rho is width scale
factor. keysOption is 1/2D Keys options. For 1D, the options can be any enum value
of RooKeysPdf::Mirror (NoMirror, MirrorLeft, MirrorRight, MirrorBoth); for 2D,
the options can be any valid characters of Roo2DKeysPdf::setOptions (a=adaptive
(default),n=normal,m=mirror,d=debug,v=verbose,vv=very verbose).

An example is shown below:

[emcNNSigSimBoth Config]

configStr = Keys

x = emcNN2

keysOption = MirrorBoth

2.2.23 rarLass Configs

rarLass is a wrapper to build the LASS parameterisation of the high mass K*(1430). The
default values are taken from Nucl Phys B296, 493 (1988).

• configStr = Lass ["<pdf Title>"]

This config specifies the pdf type is Lass. This config is required to have this pdf
configured as rarLass.

• x = AbsReal Def

• mean = AbsReal Def

• width = AbsReal Def

• effRange = AbsReal Def

• scatlen = AbsReal Def

• turnOffVal = AbsReal Def x is the default observable of the pdf. mean is the mass of
the K*(1430) resonance; width is its width; effRange is the effective range parameter
(default=3.32 GeV/c^2); scatlen is the scattering length (default=2.07 GeV/c^2); and
turnOffVal is the upper mass limit used by LAss in their fit (default=1.65 GeV/c^2);

All the variables can be defined as RooRealVar or RooFormulaVar. See createVar
(#item_createVar) for more info on how to create those variables.

An example is shown below:

[massSig Config]

configStr=Lass

x = mass

Chapter 2: RooRarFit Configuration 39

mean = 1.4 L (1.3 - 1.5)

turnOffVal = 1.53 C L (0.2 - 2.0)

width = 0.2579 C L (0.2 - 0.5)

effRange = 0.1119 C L (0.1 - 4.0)

scatlen = 0.05 C L (0.0 - 4.0)

2.2.24 rarPoly Configs

rarPoly is a wrapper of RooPolynomial/RooChebychev to build Polynomial/Chebychev
PDF.

• configStr = Polynomial ["<pdf Title>"]

• configStr = Chebychev ["<pdf Title>"]

This config specifies the pdf type is Polynomial or Chebychev. This config is required
to have this pdf configured as rarPoly.

• x = AbsReal Def

• nOrder = <orderVal>

• P01 = AbsReal Def

• ...

• P<orderVal> = AbsReal Def

x is the default observable of the pdf. nOrder is the order of the polynomial. P01, ...,
P<orderVal> define all the coeffs. P00 is not needed. All the AbsReal variables can be
defined as RooRealVar or RooFormulaVar. See createVar (#item_createVar) for more
info on how to create those variables.

An example is shown below:

[emcNNSigSimEmc Config]

configStr = Polynomial "4th order poly"

x = emcNN2

nOrder = 4

P01 = 1 +/- 10 L(-100 - 100)

P02 = 1 +/- 10 L(-1000 - 1000)

P03 = 0 +/- 10 L(-1000 - 1000)

P04 = 0 +/- 10 L(-1000 - 1000)

[mOmegaPolyBkg Config]

configStr = Chebychev "3rd order Cheby"

x = mOmega

nOrder = 3

P01 = 0.2400 +/- 0.28626 L(-1000 - 1000)

P02 = 0.1 +/- 0.005 L(-100 - 100)

P03 = 0.1 +/- 0.005 L(-100 - 100)

2.2.25 rarRelBreitWigner Configs

rarRelBreitWigner is a wrapper of RooRelBreitWigner to build a relativistic Breit Wigner
with Blatt-Weisskopf form factors. References: PDG..

40 RooRarFit

• configStr = RelBreitWigner ["<pdf Title>"]

This configuration specifies the PDF type is RelBreitWigner. This configuration is
required to have this PDF configured as rarRelBreitWigner.

• x = AbsReal Def

• mean = AbsReal Def

• width = AbsReal Def

• radius = AbsReal Def

• mass_a = AbsReal Def

• mass_b = AbsReal Def

• spin = AbsReal Def

x is the default observable of the PDF. mean is the mean of the PDF. width is the width
of the PDF. radius is the meson radius (default = 3.1 GeV^-1). spin is the spin of
the PDF (= 0,1,2). Default is 1. mass_a and mass_b are the masses of the daughters
of the resonance (e.g. kaon and pion from a K*0). The default for mass a is 0.4937
GeV (kaon) and for mass b 0.1396 GeV (pion) After being defined, the spin, radius,
mass a and mass b are always held constant in the fit. The default assumes that all
units are in GeV; if another unit is used then the radius, mass a and mass b must all
be given. All the AbsReal variables can be defined as RooRealVar or RooFormulaVar.
See createVar (#item_createVar) for more info on how to create those variables.

An example is shown below:

[massSig Config]

// in default unts of GeV

configStr = RelBreitWigner "f0(980) K*"

x = mass // GeV

mean = 0.975 L(0.9 - 1.0) // GeV

width = 0.044 L(0.02 - 1.0) // GeV

mass_a = 0.1396 C // pi mass

mass_b = 0.1396 C // pi mass

spin = 1

[massSig Config]

// in default units of MeV

configStr = RelBreitWigner "f0(980) K*"

x = mass // MeV

mean = 975 L(900 - 1000) // MeV

width = 4.4 L(2 - 1000) // MeV

mass_a = 139.6 C // pi mass MeV

mass_b = 139.6 C // pi mass MeV

radius = 3100 C // meson radius in MeV

spin = 1

Chapter 2: RooRarFit Configuration 41

2.2.26 rarStep Configs

rarStep is a wrapper of RooParametricStepFunction to build Parametric Step Function
PDF.

• configStr = Step ["<pdf Title>"]

This config specifies the pdf type is Step. This config is required to have this pdf
configured as rarStep.

• x = AbsReal Def

• nBins = <binVal>

• limits = <val1> <val2> ... <val<binVal+1>>

• H00 = AbsReal Def

• ...

• H<binVal-1> = AbsReal Def

x is the default observable of the pdf. nBins is the number of bins of the step function.
limits is a set of <binVal>+1 Double t’s setting the bounds of those bins. H00, ...,
H<binVal-1> are <binVal>-1 free parameters of the step function. All the AbsReal

variables can be defined as RooRealVar or RooFormulaVar. See createVar (#item_
createVar) for more info on how to create those variables.

Please make sure the sum of initial values of Hxx’s is less than 1, otherwise the PDF
may not converge.

An example is shown below:

[esNN2Sig Config]

configStr=Step

x=esNN2

nBins=16

limits=0 .1 .2 .3 .4 .5 .6 .65 .7 .75 .8 .85 .9 .93 .95 .975 1.

H00=.05 L(0 - 1)

H01=.05 L(0 - 1)

H02=.05 L(0 - 1)

H03=.05 L(0 - 1)

H04=.05 L(0 - 1)

H05=.05 L(0 - 1)

H06=.05 L(0 - 1)

H07=.05 L(0 - 1)

H08=.05 L(0 - 1)

H09=.05 L(0 - 1)

H10=.05 L(0 - 1)

H11=.05 L(0 - 1)

H12=.05 L(0 - 1)

H13=.05 L(0 - 1)

H14=.05 L(0 - 1)

2.2.27 rarTriGauss Configs

rarTriGauss is a wrapper to build Triple Gaussian / Triple Gaussian Model / Gexp Shape.
It is for convenience of those commonly used composite pdfs related to triple-Gaussian.

42 RooRarFit

For TripleGaussian:

• configStr = TriGauss ["<pdf Title>"]

This config specifies the pdf type is TriGauss.

• x = AbsReal/RealVar Def

• meanC = AbsReal Def

• sigmaC = AbsReal Def

• meanT = AbsReal Def

• sigmaT = AbsReal Def

• meanO = AbsReal Def

• sigmaO = AbsReal Def

• fracC = AbsReal Def

• fracO = AbsReal Def

• msSF = AbsReal Def

x is the default observable of the PDF. No derived dependent is allowed if you specify
msSF, in which case, please make sure x is observable defined in datasets. If specified,
msSF is the scale for meanC, sigmaC, meanT and sigmaT. All the AbsReal parameters
can be defined as RooRealVar or RooFormulaVar. See createVar (#item_createVar)
for more info on how to create those variables.

• FlatScaleFactorIntegral = <yes|no>

This optional config specifies to use FlatScaleFactorIntegral or not when msSF is speci-
fied. The default is yes. To disable FlatScaleFactorIntegral, this config must be set to
no.

For TripleGaussian Model:

• configStr = TriGaussModel ["<pdf Title>"]

This config specifies the pdf type is TriGaussModel.

• x = RooRealVar Def

• meanC = AbsReal Def

• sigmaC = AbsReal Def

• meanT = AbsReal Def

• sigmaT = AbsReal Def

• meanO = AbsReal Def

• sigmaO = AbsReal Def

• fracC = AbsReal Def

• fracO = AbsReal Def

• msSF = AbsReal Def

x is the default observable of the PDF. No derived dependent is allowed for this PDF
so please make sure x is observable defined in datasets. msSF is the scale for meanC,
sigmaC, meanT and sigmaT; All the AbsReal parameters can be defined as RooRealVar
or RooFormulaVar. See createVar (#item_createVar) for more info on how to create
those variables.

Chapter 2: RooRarFit Configuration 43

• FlatScaleFactorIntegral = <yes|no>

This optional config specifies to use FlatScaleFactorIntegral or not. The default is yes.
To disable FlatScaleFactorIntegral, this config must be set to no.

An example is shown below:

For GexpShape:

• configStr = GexpShape ["<pdf Title>"]

This config specifies the pdf type is GexpShape.

• x = RooRealVar Def

• tau = AbsReal Def

• decayType = <typeName>

• meanC = AbsReal Def

• sigmaC = AbsReal Def

• meanT = AbsReal Def

• sigmaT = AbsReal Def

• meanO = AbsReal Def

• sigmaO = AbsReal Def

• fracC = AbsReal Def

• fracO = AbsReal Def

• msSF = AbsReal Def

x is the default observable of the PDF. No derived dependent is allowed for this PDF
so please make sure x is observable defined in datasets. tau is the average B0 lifetime.
decayType can be SingleSided, DoubleSided (default), Flipped. msSF is the scale
for meanC, sigmaC, meanT and sigmaT; All the AbsReal parameters can be defined as
RooRealVar or RooFormulaVar. See createVar (#item_createVar) for more info on
how to create those variables.

• FlatScaleFactorIntegral = <yes|no>

This optional config specifies to use FlatScaleFactorIntegral or not. The default is yes.
To disable FlatScaleFactorIntegral, this config must be set to no.

An example is shown below:

2.2.28 rarTwoGauss Configs

rarTwoGauss is a wrapper to build Double Gaussian PDF.

• configStr = TwoGauss ["<pdf Title>"]

This config specifies the pdf type is TwoGauss. This config is required to have this pdf
configured as rarTwoGauss.

• x = AbsReal Def

• meanC = AbsReal Def

• sigmaC = AbsReal Def

• meanT = AbsReal Def

• sigmaT = AbsReal Def

• fracC = AbsReal Def

44 RooRarFit

• scale = AbsReal Def

• shift = AbsReal Def

x is the default observable of the pdf. sigmaC will be scaled by the value of scale
if specified; meanC and meanT will be shifted by the value of shift if specified. All
the variables can be defined as RooRealVar or RooFormulaVar. See createVar (#item_
createVar) for more info on how to create those variables.

An example is shown below:

[deSig Config]

configStr = TwoGauss "Two Gaussians"

x =de

meanC = 0 L(-.1 - .1)

meanT = 0 L(-.1 - .1)

sigmaC = 0.02 L(0 - .15)

sigmaT = 0.1 L(0 - .3)

fracC = 0.8 L(0 - 1)

2.2.29 rarUniform Configs

rarUniform is a wrapper of RooUniform to build a flat PDF in N dimensions

• configStr = Uniform ["<pdf Title>"]

This config specifies the pdf type is Uniform. This config is required to have this pdf
configured as rarUniform.

• obs = <obs1> <obs2> ...

Config obs lists all observables for this PDF, <obs1>, <obs2>, All the observables
can be defined as RooRealVar or RooFormulaVar. See createVar (#item_createVar)
for more info on how to create those variables.

An example is shown below:

[Sig Config]

configStr = Uniform

obs = mes de

fitData = sigMC

2.2.30 rarVoigtian Configs

rarVoigtian implements a Voigtian function. This distribution is a Breit Wigner convo-
luted with a Gaussian.

• configStr = Voigtian ["<pdf Title>"]

This config specifies the pdf type is Voigtian. This config is required to have this pdf
configured as rarVoigtian.

• x = AbsReal Def

• mean = AbsReal Def

• width = AbsReal Def

• sigma = AbsReal Def

x is the default observable of the pdf. mean is the mean of the Breit-Wigner. sigma is
the width of the Breit-Wigner. width is the width of the Gaussian convolution function.

Chapter 2: RooRarFit Configuration 45

All the variables can be defined as RooRealVar or RooFormulaVar. See createVar (#item_
createVar) for more info on how to create those variables.

An example is shown below:

[voigtianSig Config]

configStr = Voigtian

x = de

mean = 0 L (-1 - 1)

sigma = 0.003 L(0 - 1)

width = 0.004 L(0 - 1)

2.2.31 rarUsrPdf

rarUsrPdf is a wrapper to build user-defined PDF. So for it to work for user-defined PDF,
one needs to modify the source code, basically file rarUsrPdf.cc in working release dir.
Please follow instructions at the very beginning of the source file:

// Please change this cc file to make use of your PDF.

// In many cases, you just need to change codes inside marks:

//===>

// v

// v

// and

// ^

// ^

//===>

There are two main parts need to be changed:

1. Include header file of user-defined PDF

//===>

// Please include your RooFit Pdf header here v

// #include "mydir/myPdf.hh" v

// ^

// ^

//===>

2. Create RooAbsReal’s and RooAbsPdf in function rarUsrPdf::init()

//===>

// change the lines in between the marks as you want v

// v

// first get its obs

_x=createAbsReal("x", "observable"); assert(_x);

// Config pdf params

// instead of a b c etc, you can give them more meaningful

// names and titles for example

// _a=createAbsReal("mean", "#mu", 0, -10, 10);

// _b=createAbsReal("sigma", "#sigma", 0, -10, 10);

// if you give them different names, please use those names

// in the PDF config sections,

// for example, a is now mean, b sigma, etc.

46 RooRarFit

// [myPdf Config]

// configStr = UsrPdf

// x = AbsReal Def

// mean = AbsReal Def

// sigma = AbsReal Def

// Default param creation

_a=createAbsReal("a", "a", 0, -10, 10);

_b=createAbsReal("b", "b", 0, -10, 10);

_c=createAbsReal("c", "c", 0, -10, 10);

_d=createAbsReal("d", "d", 0, -10, 10);

_e=createAbsReal("e", "e", 0, -10, 10);

_params.Print("v");

// YOU MUST CREATE YOUR PDF AND SET IT TO _thePdf

// create pdf

//_thePdf=new myPdf(Form("the_%s", GetName()),_pdfType+" "+GetTitle(),

// *_x, *_a, *_b, *_c, *_d, *_e);

// ^

// change the lines in between the marks as you want ^

//===>

Config Directives:

• configStr = UsrPdf ["<pdf Title>"]

This config specifies the pdf type is UsrPdf. This config is required to have this pdf
configured as rarUsrPdf.

• x = AbsReal Def

• a = AbsReal Def or <name_chosen_for_a> = AbsReal Def

• b = AbsReal Def or <name_chosen_for_b> = AbsReal Def

• c = AbsReal Def or <name_chosen_for_c> = AbsReal Def

• d = AbsReal Def or <name_chosen_for_d> = AbsReal Def

• e = AbsReal Def or <name_chosen_for_e> = AbsReal Def

x is the default observable of the pdf. a, b, c, d, and e are the parameters defined in the
rarUsrPdf::init(). All the variables can be defined as RooRealVar or RooFormulaVar.
See createVar (#item_createVar) for more info on how to create those variables.

An example is shown below:

[myPdf Config]

configStr = UsrPdf

x = myObs

a = 36 L(0 - 100)

b = 36 L(0 - 100)

c = 36 L(0 - 100)

d = 36 L(0 - 100)

e = 36 L(0 - 100)

Chapter 2: RooRarFit Configuration 47

2.3 Fitter Actions Configuration

After every pdf is created, fitter action section is used to direct the fitter to finish its jobs.
The default action section, [Fitter Action], can be changed by command line option, -A
"<fitter action section>". The default for all pdf actions are no action. It is advisable
to have several sections with one action per section, and then run the fitter with -A option
to specify which action to fulfill.

Each action works like a pipe: it has input from other action or initial values, it then
outputs param/root files as other actions’ input or final results for user to review. Each
action initializes its params by reading in intermediate param file, and each action also has
configs to override those intermediate params after reading them in.

The param value overriding order is: Initial values from pdf config sections will be
overridden by input param file (except for pdfFit action if prePdfReadParams and
prePdfReadSecParams are default); then values from input param file are overridden by
values specified in action section and param section with config xxxReadSecParams,
finally, the constant attributions will be overridden/specified with configs postPdfFloat,
preMLFix, and preMLFloat in pdf config and/or action sections. Before params are saved
into param files, they will be set to constant.

2.3.1 pdfFit Action

pdfFit action is to fit pdfs to particular datasets to get their parameters. Pdfs, datasets,
etc., can be plotted after fitting.

The default param input is the initial values after all PDFs are created. Configs
prePdfReadParams and prePdfReadSecParams can be used to change the initial values.
The output param file is the default input for toy study and ML fit. One can override
any fitted values from this action by some configs listed below. ROOT file containing plots
produced by this action is for user to review the fitting. As always, log file also provides
useful information.

• pdfFit = <no|yes>

To enable this action, this config must be explicitly set to yes (default no).

• pdfToFit = <pdfName1> [<pdfName2> ...]

To fit given pdfs only, list them in this config, and all other pdfs will be ignored. (default
list is null, fit all PDFs). This config is useful when you are fine-tuning parameters of
one or two pdfs and do not want to run fitting on every pdf.

• prePdfReadParams = <no|yes|paramFileID>

To override initial param values after PDFs are created for pdfFit action, this config
must be explicitly set to yes (default no). The param file name will be automatically
generated based on this config. You can specify paramFileID (#item_paramFileID)
to change its default name.

• prePdfReadSecParams = <no|yes|secName>

If set to yes (default no), just before pdfFit action, the fitter will try to override the
params with values found in the action section. Instead of yes or no, you can also give
it a section name, and then the fitter will try to read values from that section first.
This config is useful when you want to override any initial values before pdfFit.

• postPdfMakePlot = <no|yes|rootFileBaseName>

To get pdf plots after pdfFit, this config must be explicitly set to yes (default no). The

48 RooRarFit

root file name will be <configFile>.<fitterName>.pdfPlot.<actionName>.root un-
less the token is actually a root file name.

• postPdfReadSecParams = <no|yes|secName>

If set to yes (default no), just after pdfFit is done, the fitter will try to override the
params with values found in the action section. Instead of yes or no, you can also give
it a section name, and then the fitter will try to read values from that section first.
This config is useful when you want to override any values got by the fit with those
you think are more appropriate, for example, those got from control samples.

• postPdfWriteParams = <no|yes|paramFileID>

To output pdf parameters after pdfFit, this config must be explicitly set to yes (default
no). The param file name will be automatically generated based on this config. You
can specify paramFileID (#item_paramFileID) to change its default name.

• fitRange_<obsName> = <Min> <Max>

It sets pdfFit ranges for observable <obsName>. If not specified, the range will be set
to the full ranges when it is created. This config will affect all pdfFit, if it is needed
for just one or two PDFs, please move this config to individual PDF config sections.

• plotRange_<obsName> = <Min> <Max>

It sets plot ranges for observable <obsName>. If not specified, the range will be set to
the full ranges when it is created. This config will affect all pdfFit, if it is needed for
just one or two PDFs, please move this config to individual PDF config sections.

prePdfReadParams has been dropped. The reason for this is that pdfFit is really the
very first step in the fitting procedure and you really want to make sure everything you put
here is what you mean. So place the initial values into the config file and make sure they
are reasonable. With another file overriding the config file, I can only see more trouble and
subtlety. A corollary is that never change the intermediate param files, and if you want to
change the param values in those files, change them in the config file.

An example is shown below:

[pdfFit Config]

// pdfFit options

pdfFit = yes

//pdfToFit = deSig deBkg

postPdfMakePlot = yes

postPdfWriteParams = yes

2.3.2 toyStudy Action

toyStudy action is used to validate the fitting procedure. To split a large toy job into several
smaller ones, different command line option -t <toyID> must be given for different jobs to
enable different random seeds, output root file names, etc.

The default param input is the intermediate param file from pdfFit action. Configs
preToyReadParams and preToyReadSecParams can be used to change the initial values.
(After unblind, you may want to change the input to the intermediate param file from
mlFit action. See config preToyReadParams below for howto.) There is no param file
output. ROOT file containing toy study results produced by this action is for user to
review. As always, log file also provides useful information.

Chapter 2: RooRarFit Configuration 49

If all or part of the events of a component are embedded from datasets other than
generated from PDF, the pulls of yields are calculated based on wrong true value by RooFit,
in this case, please use pull calculated by RooRarFit, with suffix _embd after the pull name.
For example, yield nSig’s pull will be nSigpull_embd.

• toyStudy = <no|yes>

To enable this action, this config must be explicitly set to yes (default no).

• preToyReadParams = <yes|no|paramFileID>

NOT to read in initial values of parameters before toyStudy, this config must be ex-
plicitly set to no (default yes). The param file name will be automatically generated
based on this config. You can specify paramFileID (#item_paramFileID) to change
its default name. The default input param file for toy study is the output param file
from pdfFit. To read, for example, from output param file of mlFit, set this config like

preToyReadParams = A mlFit

• preToyReadSecParams = <yes|no|secName>

If set to yes (default), just after read in params from param file, the fitter will try to
override the params with values found in the action section. Instead of yes or no, you
can also give it a section name, and then the fitter will try to read values from that
section first. This config is useful when you want to override any values (for example,
yields) just for toy studies.

• preToyRandParams = no|<param1> <formula1> ...

It is helpful if we can choose randomly (ie, scan) values for some params before each
toy experiment. For example, we want to study the fit behavior for all possible C and
S for CP analysis. Or we want to study all possible polarization fractions for B to VV
modes. You can list all those params here and give them formulae to specify values. If
the first token is no, the procedure is disabled.

• preToyRandGenerators = <pdf1> ...

This config specify Pdfs to generate random params.

• postToyWriteParams = <yes|no|rootFileBaseName>

NOT to write out pdf parameter pulls after toyStudy, this config
must be explicitly set to no (default yes). The root file name will be
<configFile>.<fitterName>.toyPlot.<actionName>.%02d.root unless the token
is actually a root file name.

• protDatasets = <datasetName> <comp1ProtData> <comp2ProtData> ...

This config can be set to names of prototype datasets for toy study. (default datasets
will be used if necessary but not specified here). You can specify for each component
its own protDataset. Prototype datasets are used to get observable distribution infor-
mation not in ml model. If the ml model is complete, ie, all distribution information
is specified within the model, protDataset will not be used.

• protDataGenLevel = <1|0|2|3>

This config specifies how the protDataset for each experiment is generated (default
level 1).

• 0 No protDataset. If needed, generated from protData generator.

• 1 Use default master protDataset as protDataset if needed.

• 2 Generate protDataset from individual protDatasets if needed.

50 RooRarFit

• 3 Generate protDataset from protData generator if needed.

• protDataVars = [<obs1> ...]

Please specify this config in the section where corresponding Pdf is created. See Sec-
tion 2.2.1 [commonPdfConfig], page 17.

• protDataEVars = [<obs1> ...]

Please specify this config in the section where corresponding Pdf is created. See Sec-
tion 2.2.1 [commonPdfConfig], page 17.

• toyNexp = <numberOfToy>

To specify number of toy experiments for toyStudy (default 1). If you specify command
line option, -n <toyNexp>, the value specified at command line will override this config.

• toyNevt = <numberOfEvt> <fixed|floated|extended|notfixed>

To specify the number of events per toy experiment and Poisson fluctuation (default
0 fixed). 0 means the number of events is that of the prototype dataset. If the total
yields (expected number of events for extended model) is different from the prototype
dataset, the largest yield (usually continuum background) will be adjusted. To enable
Poisson fluctuation, the second argument should be set to any of floated, extended,
and notfixed.

• toySrc_<srcCoeff> = <srcData1> <val1> ...

This config specifies generation sources for component of <srcCoeff>. If not specified,
the default is always pdf <srcCoeff_value> which will generate the component using
pdf.

<srcCoeff> is the final variable of component coeff. Component coeff is usually the
number of events for that component, and if that number is actually the final variable
(not dependent on other variables), its name should replace <srcCoeff>. If the number
of events is actually a function of branching fraction, etc., the name of branching
fraction, etc., should be used.

<srcData1> is the data source to generate toy sample from. The default value is pdf

which means generating from PDF. Or it could be the name of any dataset defined,
and the toy events for this component will be selected from that dataset. <val1>

is the value of <srcCoeff> for that data source. It could be any number valid for
toySrc_<srcCoeff>. For example, if <srcCoeff> is the component coeff itself, <val1>
is number of events; if it is branching fraction, <val1> is the value of branching fraction
you want to generate. You can have more than one such source and value pair if you
want to generate that component from multi sources.

<valX> can also be a string used to calculate the value as for RooFormulaVar. For
example, it can be “@0*@1 nSig fracL”, which means the value for that data source
will be nSig*fracL.

• toyEmbdUnCorrelate = <obsGroup1>...

This config, if specified, uncorrelate observables among groups for embedded events.
For example config

toyEmbdUnCorrelate = de mes "fisher mOm"

uncorrelate de, mes, "fisher mOm" among each other, but keep the correlation of fisher
and mOm. If there are any observables left, the correlation among those observables
are also kept.

Chapter 2: RooRarFit Configuration 51

• postEmbdRandObs = <srcData1> <obs1> <obs2>...<pdfForSrcData1> ...

This config specifies for each srcData (<srcData1>, etc., non-pdf source) observables
(<obs1>, <obs2>, etc.) need to be randomized according to pdf (<pdfForSrcData1>).
This feature is useful to create embedded events for different C and S from non CP
violating MC samples.

• toyDataFilePrefix = <default|no|yes|toySampleNameID>

The toy sample file name will be automatically generated based on this config (See
toySampleNameID (#item_paramFileID)). Since the toy data files are seldom used else-
where and consume very large disk space, the default (not specified or set to default)
will be no toy data file output.

Use command line option -d <toySampleDir> to specify a dir with large disk space
for toy samples (default dir .toyData).

• toyGenerate = <yes|no>

NOT to generate toy sample in toyStudy, this config must be explicitly set to no (default
yes).

The first toy sample generated will be saved as “toySample”, so in the same action
section, other actions following toyStudy can use the sample, for example, to do sPlot.
Just give toySample as config for input data, for example

sPlotData = toySample

• toyFit = <yes|no>

NOT to do fit in toyStudy, this config must be explicitly set to no (default yes).

• toyFitOption = <fitOptions>

This config can be used to set ml-fitting options for toy study (default "emhqr"). The
full ml model is an extended pdf, so the fitting option should always have option "e",
which means extended fit.

• toyFitMinos = <notSet|minosArgs>

This config can be used to set MINOS on for only certain parameters for toy study,
(default "notSet").

• toyChkNegativePdf = <no|yes>

If set to yes, the fitter will check if the PDFs have negative values over the allowed
observable ranges. The default value is no, not to do the check. If the PDFs have
negative value, toy studies will usually show biases in purely PDF generated samples,
so this check is not necessary to demonstrate the problem. But it can be used as
auxiliary method to confirm the bias (from pure toys) is from negative PDF values.
However, it is still possible that it fails to report such problems if subtle PDFs are used.

An example is shown below:

[toyStudy AConfig]

// toy options

toyStudy = yes

// init values for yields

nSig = 160 L(0 - 300)

nChmls = 1703 L(0 - 30000)

nBkg = 5000 L(0 - 30000) // largest number will be adjusted

preToyRandParams = dtSig_C "@0*cos(@1) R theta" dtSig_S "@0*sin(@1) R theta"

52 RooRarFit

preToyRandGenerators = Rpdf thetaPdf

protDatasets = onData //names of protDatasets

toyNexp = 400 // # experiments

toyNevt = 0 fixed // default: 0 set to protData #evt

// fixed no fluctuation

// if it is pure toy, you do not need to specify how to generate

// for embedded toy, for example you can do

toySrc_nSig = sigMC "@0 nSig" // from sigMC

toySrc_nChmls = bbMC 10 pdf "@0-10 nChmls" // 10 from bbMC, the rest from pdf

[Rpdf Config]

configStr = Generic

formula = "@0*@0" R

R = R 0 L(0 - 1)

[thetaPdf Config]

configStr = Generic

formula = "1" theta

theta = theta 0 L(-3.14159265358979323846 - 3.14159265358979323846)

2.3.3 mlFit Action

mlFit action is to fit full ml model to (on-peak) dataset to get yields, etc.

The default param input is the intermediate param file from pdfFit action. Configs
preMLReadParams and preMLReadSecParams can be used to change the initial values. The
intermediate param output file have the final values from the ML fit, and will be used as
input for all kind of plotting. There is no ROOT file output. All the results are shown in
log file.

• mlFit = <no|yes>

To enable this action, this config must be explicitly set to yes (default no).

• mlFitData = <datasetName> ["<optional cut string>"]

This config specifies the dataset for mlFit action. You can give this config an optional
string as the second token, which will be applied to the dataset for additional cuts.

• mlFitOption = <fitOptions>

This config can be used to set ml-fitting options (default "ehr"). The full ml model
is an extended pdf, so the fitting option should always have option "e", which means
extended fit. Add option "b" to suppress RooFit informational messages for blind fit.

• preMLReadParams = <yes|no|paramFileID>

NOT to read in initial values of parameters before mlFit, this config must be explicitly
set to no (default yes). The param file name will be automatically generated based on
this config. You can specify paramFileID (#item_paramFileID) to change its default
name.

• preMLReadSecParams = <yes|no|secName>

If set to yes (default), just after read in params from param file, the fitter will try to
override the params with values found in the action section. Instead of yes or no, you
can also give it a section name, and then the fitter will try to read values from that
section first.

Chapter 2: RooRarFit Configuration 53

• postMLWriteParams = <yes|no|paramFileID>

NOT to output pdf paramters after mlFit, this config must be explicitly set to no

(default yes). The param file name will be automatically generated based on this
config. You can specify paramFileID (#item_paramFileID) to change its default name.

• postMLSignf = [no] <paramName1> <0|0signfValue> ...

If specified (and the first token is not no), significance of given params with respect to
given values (default 0) will be calculated.

• postMLSysParams = <no|[<defaultVariantUnit>] param1Specification...>

This config specifies how to vary fixed parameters to study the systematic uncertainties
of floating parameters we are interested in, due to the uncertainties of those fixed
parameters. Optional <defaultVariantUnit> specifies default variations in term of
errors (default 1). paramXSpecification includes parameter name, plus variation and
minus variation in term of parameter errors. If the variations are in term of absolute
value, append those numbers with V. If only one variation for the param is specified, it
will be used for plus and minus variations. If no variation value specified for a param,
the default value will be used. For split params, there are two choices. One is to list
the unsplit params and vary the split params all together in the same direction. One is
to list individual split params and vary them separately. If this config is not specified
(or the first token is no), no such systematic error study will be performed.

• postMLSysVars = <no|var1...>

This config specifies free parameters, usually those we are interested in, for example,
yields, the fitting uncertainties of which, due to uncertainties of fixed parameters in
postMLSysParams, need to be studied. If not specified (or the first token is no), no
such systematic error study will be performed.

When both postMLSysParams and postMLSysVars are set properly, systematic error
studies for postMLSysVars due to the variations of fixed postMLSysParams will be
performed. The systematic error table will be printed out at the end of mlFit job. The
systematic error table looks like:

Systematic Error Table:

nSig corr matrix: var1 var2 var3

var1 +4 -2 +.2 -.2 +.2 1 0 0

var2 +1 -1 -.3 +.3 -.3 0 1 0

var3 +1 -1 +.4 -.4 +.4 0 0 1

(w/o) corr): .5

(w/ corr): .5

The first column is the names of fixed vars to vary. The second column is the plus
variation for the vars. The third column is the minus variation for the vars. The next
three columns are for the first studied var: the plus variation, minus, and average
effects. The remaining studied vars, if any, will follow it in the same fashion. At the far
right side of the table is the correlation matrix of those fixed vars. The last two rows
show the total effects without and with taking the correlation matrix into account.

Please notice that if the number of fixed vars in the study is large, the table will be
very very long and wide, please make sure the editor used to view the table does not
wrap lines so that it is more readable.

• postMLGOFChisq = <no|yes>

54 RooRarFit

If specified (and the first token is not no), Goodness-of-fit defined as chisq will be
calculated.

This config can also be used in toyStudy action.

An example is shown below:

[MLFit Config]

// mlFit options

mlFit = yes

//mlFitOption = emhr

postMLSignf = nSig

postMLSysParams = deSig_scale .05V deSig_simga

postMLSysVars = nSig fL

2.3.4 scanPlot Action

scanPlot action is to scan NLL within interested param space. The recorded values in
dataset or plot for scanPlot are actually 2NLL so they are chisquares.

The default param input is the intermediate param file from mlFit action.
preScanPlotReadParams and preScanPlotReadSecParams can be used to change the
initial values. There is no intermediate param file output. ROOT file containing scanPlots
produced by this action is for user to review. As always, log file also provides useful
information.

RooRarFit provides a set of static functions to manipulate (combine/shift/add errors)
the NLL curves (for 1D scanPlot). combine.cc (Sample_scripts/combine.cc) and com-
bine.C (Sample_scripts/combine.C) show the usage. (Copy combine.C to workdir and
edit it to use.)

• scanPlot = <no|yes>

To enable this action, this config must be explicitly set to yes (default no).

• preScanPlotReadParams = <yes|no|paramFileID>

NOT to read in initial values of parameters before scanPlot, this config must be ex-
plicitly set to no (default yes). The param file name will be automatically generated
based on this config. You can specify paramFileID (#item_paramFileID) to change
its default name.

• preScanPlotReadSecParams = <no|yes|secName>

If set to yes (default no), just after read in params from param file, the fitter will try
to override the params with values found in the action section. Instead of yes or no,
you can also give it a section name, and then the fitter will try to read values from that
section first.

• scanPlotFile = <default|scanPlotOutputFile.root>

The root file name will be
<configFile>.<fitterName>.scanPlot.<actionName>.root unless the token is
actually a root file name.

• scanPlotData = <datasetName>

This config specifies the dataset for scanPlot action.

• scanPlotFitOption = <fitOptions>

This config can be used to set scanPlot fit options (default "emhr"). The full ml model

Chapter 2: RooRarFit Configuration 55

is an extended pdf, so the fitting option should always have option "e", which means
extended fit.

• scanVarShiftToNorm = <no|yes>

The scanPlot min shifts a little bit from the normal mlFit values, to correct the shifts,
this config must be set to yes (default no).

• scanVars = <varName1> [xmin] [xmax] ...

To specify scanPlot variables, this config must be explicitly set to the variable names
(default notSet). The variable name should be full name, and for each variable, two
optional limits can be specified to get plot ranges rather than the default ones.

• nScanPoints = <100|#Points>

To specify number of scan points (default 100). If there are more than one var specified
in scanVars to scan, the scan points will be drawn randomly in the n-dimensional space.
If there is only one var to scan, the points are equally distributed in the allowed range.

• nScanSegments = <1|#times>

This config is to specify number of scan segments (for 1D only and default is 1). It is
useful if the scanPlot action takes too much time if it is done in one job. One can then
divide the whole region with this config into smaller pieces and use submitToy to run
the jobs with batch queues.

nScanPoints is the number of scan points per segment so the total scanned points will
be nScanPoints*nScanSegments.

An example is shown below:

[BrScan]

// scanPlot options

scanPlot = yes

scanVars = BR 0 10

nScanPoints = 50

2.3.5 projPlot Action

projPlot action is to get projection plots.

The default param input is the intermediate param file from mlFit action.
preProjPlotReadParams and preProjPlotReadSecParams can be used to change the
initial values. There is no intermediate param file output. ROOT file containing projPlots
and LLR plots produced by this action is for user to review. As always, log file also
provides useful information.

• projPlot = <no|yes>

To enable this action, this config must be explicitly set to yes (default no).

• preProjPlotReadParams = <yes|no|paramFileID>

NOT to read in initial values of parameters before projPlot, this config must be ex-
plicitly set to no (default yes). The param file name will be automatically generated
based on this config. You can specify paramFileID (#item_paramFileID) to change
its default name.

• preProjPlotReadSecParams = <no|yes|secName>

If set to yes (default no), just after read in params from param file, the fitter will try
to override the params with values found in the action section. Instead of yes or no,

56 RooRarFit

you can also give it a section name, and then the fitter will try to read values from that
section first.

• projPlotFile = <default|projPlotOutputFile.root>

The root file name will be
<configFile>.<fitterName>.projPlot.<actionName>.root unless the token is
actually a root file name.

• projComps = <compName1> ...

To specify components to be projected, this config must be explicitly set to the names
of those components. You can have more than one component to be projected, just list
them here.

• projLLRPlots = <yes|no|compName1 ...>

If set to yes (by default), likelihood ratio plots will be done for default dataset, total
model, and each component. If you do not want LLR plots of all components, you can
specify the components you want here.

• projLLRScale_<compName> = <scale>

• projLLRScale = <scale>

It specifies scale factor for <compName> in the LLR plot to its expected number of
events (default 10, ie, the normalization factor is 10 times the expected events). The
first form has higher priority for a given component.

• plotBins_LLR = <nBin>

It specifies number of plot bins for likelihood ratio plots (default 100).

• projVars = <varName1> ...

To set the projection observables, this config must be explicitly set to the names of
that observables (default notSet).

• projPlotData_<obs> = <datasetName> ["<optional cut string>"]

• projPlotData = <datasetName> ["<optional cut string>"]

This config specifies the dataset for projection plot action. You can give this config an
optional string as the second token, which will be applied to the dataset for additional
cuts. This optional cut (if any) will be appended to projOptimRange. The first form
has higher priority for a given observable.

• projPlotSaveLLR = <no|yes>

If this config is set to yes (default no), the dataset for projection (specified with
projPlotData or projPlotData_<obs>) will be saved into the output root file with
LLR values appended. The LLR column will be named as lRatioFunc_<var>.

• projPlotCat_<obs> = <no|CatName1...>

• projPlotCat = <no|CatName1...>

Projection plot will also be done for each type of the cats specified here (default no).

• projAsymPlot_<obs> = <no|CatName>

• projAsymPlot = <no|CatName>

To have asym plot with projection, this config must be set to the cat name (default no,
no asym plot). The category must have, and can only have, two types, in which case
you get one projection plot for each cat type, and one asym plot. The first form has
higher priority for a given observable.

• projLRatioCut_<obs> = <cutVal>

Chapter 2: RooRarFit Configuration 57

• projLRatioCut = <cutVal>

To specify likelihood ratio cut. The value should be between 0 and 1 (default 0.9).
The first form has higher priority for a given observable.

• plotBins_<varName> = <nBin>

To specify number of plot bins for projection plot of observable <varName>. If not
specified, the number of plot bins will be set to the default value for that observable
(when the observable is created with argument B(<nBins>)).

• plotRange_<obsName> = <Min> [bBoundary1] ... <Max>

It sets plot ranges for observable <obsName>. If not specified, the range will be set to
the full ranges when it is created. You can specify optional boundaries for asym plot.

• projFindOptimCut_<obs> = <no|yes>

• projFindOptimCut = <no|yes>

If set to yes (default no), the fitter will try to find the optimal projLRatioCut for
projection. The first form has higher priority for a given observable.

• projOptimStep_<obs> = <stepVal>

• projOptimStep = <stepVal>

This config specifies the searching step for optimal cut (default 0.005, ie, 200 steps from
ratio 0 to 1). The first form has higher priority for a given observable.

• projOptimFormula_<obs> = [<optimal_formula>]

• projOptimFormula = [<optimal_formula>]

The default optimization formula is N^2/N_total. You can specify a different formula
to optimize, for example, "pow(@0,3)/@1", where @0 is for N and @1 is for N_total,
and the optimization is done with N^3/N_total. The first form has higher priority for
a given observable.

• projOptimRange_<obs> = [<range_cut>]

• projOptimRange = [<range_cut>]

This config specifies ranges on which the optimization is performed. The default is
‘1’ which means the full range (of projection variable, etc.). The first form has higher
priority for a given observable.

• projOptimData = [<comp1Data> ...]

This config specifies the dataset for each component to be projected from where the
projLRatioCut efficiency for that component is got. If not specified, the datasets used
are the default datasets.

• projOptimDataLimit = [40000|<NumOfEvts>]

This config specifies the max number of events (default 40000) for datasets used for
LLR cut optimization.

An example is shown below:

[ProjAct]

// projectionPlot options

projPlot = yes

preProjPlotReadParams = yes

projPlotFile = default

projComps = SigPdf

58 RooRarFit

projVars = de mes

// for de

projLRatioCut_de = .45

plotBins_de = 20

projFindOptimCut_de = yes

projOptimStep_de = .001

projOptimRange_de = "abs(de)<0.07"

// for mes

projLRatioCut_mes = .55

plotBins_mes = 16

projFindOptimCut_mes = yes

projOptimStep_mes = .001

projOptimRange_mes = "mes>5.274&&mes<5.286"

// for all other implicitly

projLRatioCut = .85

projFindOptimCut = no

projOptimStep = .005

2.3.6 contourPlot Action

contourPlot action is to get 2NLL contour plots for two floating parameters.

The default param input is the intermediate param file from mlFit action.
preContourPlotReadParams and preContourPlotReadSecParams can be used to change
the initial values. There is no intermediate param file output. ROOT file containing
contourPlots produced by this action is for user to review. As always, log file also provides
useful information.

• contourPlot = <no|yes>

To enable this action, this config must be explicitly set to yes (default no).

• preContourPlotReadParams = <yes|no|paramFileID>

NOT to read in initial values of parameters before contourPlot, this config must be
explicitly set to no (default yes). The param file name will be automatically generated
based on this config. You can specify paramFileID (#item_paramFileID) to change
its default name.

• preContourPlotReadSecParams = <no|yes|secName>

If set to yes (default no), just after read in params from param file, the fitter will try
to override the params with values found in the action section. Instead of yes or no,
you can also give it a section name, and then the fitter will try to read values from that
section first.

• contourPlotFile = <default|contourPlotOutputFile.root>

The root file name will be
<configFile>.<fitterName>.contPlot.<actionName>.root unless the token is
actually a root file name.

• contourPlotData = <datasetName> ["<optional cut string>"]

This config specifies the dataset for contourPlot action. You can give this config an
optional string as the second token, which will be applied to the dataset for additional
cuts.

Chapter 2: RooRarFit Configuration 59

• nContours = <2|1|3|4|5|6>

To specify number of contours. The value should be between 1 and 6 (default 2). Each
contour is 1 sigma (unit in terms of 2NLL) away from inner contour.

• contourVars = <varNameX> [xmin] [xmax] <varNameY> [ymin] [ymax]

To specify contour variables, this config must be explicitly set to the variable names
(default notSet). The variable name should be full name, and for each variable, two
optional limits can be specified to get plot ranges rather than the default ones.

• contourRestrictFloatParams = <no|yes|nErrorForAll|floatParam1 nError1

...>

It might save a lot of time and have a better chance to get a contour plot if we
restrict all other free parameters to narrow ranges. If set to yes (default no), the
limits of every float parameter will be set to 2 times its error (or remains unchanged if
that limit is larger). You can give a different scale factor for all floating parameters,
or you can give explicitly for each floating parameter a range factor. The factor can
be any positive number.

An example is shown below:

[fLvsNsigContour]

// contourPlot options

contourPlot = yes

preContourPlotReadParams = yes

contourPlotFile = default

contourVars = nSig fL

nContours = 3

2.3.7 sPlot Action

sPlot action is to get sPlots.

The default param input is the intermediate param file from mlFit action.
preSPlotReadParams and preSPlotReadSecParams can be used to change the initial
values. There is no intermediate param file output. ROOT file containing sPlots and
sWeighted datasets produced by this action is for user to review. As always, log file also
provides useful information.

• sPlot = <no|yes>

To enable this action, this config must be explicitly set to yes (default no).

• preSPlotReadParams = <yes|no|paramFileID>

NOT to read in initial values of parameters before sPlot, this config must be explicitly
set to no (default yes). The param file name will be automatically generated based on
this config. You can specify paramFileID (#item_paramFileID) to change its default
name.

• preSPlotReadSecParams = <no|yes|secName>

If set to yes (default no), just after read in params from param file, the fitter will try
to override the params with values found in the action section. Instead of yes or no,
you can also give it a section name, and then the fitter will try to read values from that
section first.

60 RooRarFit

• sPlotFile = <default|sPlotOutputFile.root>

The root file name will be <configFile>.<fitterName>.sPlot.<actionName>.root

unless the token is actually a root file name.

• sPlotSaveSWeight = <no|yes>

By default, only the sPlot itself will be saved into root file. If this config is set to yes

(default no), the sWeighted dataset will be saved as well.

• sPlotComps = <all|compName1 ...>

An sPlot will be plotted for each component specified. The default is all, which means
sPlot will be plotted for all components.

• sPlotVars = <varName> ...

To set the sPlot observables, this config must be explicitly set to the names of that
observables (default notSet).

• sPlotData_<obs> = <datasetName> ["<optional cut string>"]

• sPlotData = <datasetName> ["<optional cut string>"]

This config specifies the dataset for sPlot action. You can give this config an optional
string as the second token, which will be applied to the dataset for additional cuts.
The first form has higher priority for a given observable.

• sPlotIgnoredVars_<obs> = <varName1> ...

• sPlotIgnoredVars = <varName1> ...

In addition to sPlotVar, observables listed here (if any) will be ignored for sPlot
plotting. The reason is some observables are highly correlated, to remove one, you have
to remove all, otherwise the PDF for sPlot will not be correct, for example, the two
helicities in VV modes. The default is notSet for no additional removed observables.
The first form has higher priority for a given observable.

• sPlotPdfOverlay_<obs> = <direct|yes|no|[yield1 pdf1...]>

• sPlotPdfOverlay = <direct|yes|no|[yield1 pdf1...]>

The default is to overlay pdf on sPlot. If set to no, no pdf overlaid; if set to direct

(default), the pdf used will be the pdf built directly for that component and that obs,
instead of the total pdf; if set to yes, the total component pdf will be used, where the
time of pdf overlay will be long due to the projection of the total pdf in most cases.
You can also give explicitly for each component which pdf to use, or if to plot at all.
For example,

sPlotPdfOverlay_mRho = direct nSig mRhoSigExtra nBkg no

specifies mRho sPlot pdf overlay settings: no overlay for yield nBkg, use ‘direct’ pdfs for
all other components and use pdf mRhoSigExtra as the ‘direct’ pdf for yield nSig.

To overlay pdf onto sPlot of obs which is not included in the fit model, you have to
give explicitly the name of pdf to overlay for that yield and obs, because the fitter can
not find overlay pdf using the fit model.

• sPlotNormIgnoredObs = <obs1> ...

This config can be used to ignore some observables for pdf normalization. For example,
when plot with dt, dtErr and tagFlav should not be in the normalization list so this
config should be used.

• plotBins_<varName> = <nBin>

To specify number of plot bins for sPlot of observable <varName>. If not specified,

Chapter 2: RooRarFit Configuration 61

the number of plot bins will be set to the default value for that observable (when the
observable is created with argument B(<nBins>)).

• plotRange_<obsName> = <Min> <Max>

It sets plot ranges for observable <obsName>. If not specified, the range will be set to
the full ranges when it is created.

• sPlotHist = <default|no|yes>

By default (default or no), the sPlot is saved as RooPlot. If for some reason, it is
desirable to save the sPlot as regular histogram, this config can be set to yes.

An example is shown below:

[desPlot Config]

// sPlot options

sPlot = yes

preSPlotReadParams = yes

sPlotFile = default

sPlotComps = all

sPlotVar = de

plotBins_de = 15

2.3.8 combinePlot Action

The combinePlot action is used to combine the NLL curves from the scan action and con-
voluted them with systematic errors. The systematic errors can be categorized as additive
errors, uncorrelated multiplicative errors and correlative multiplicative errors. The signifi-
cance of the central value including the combined systematic and statistical errors can be
calculated as well as an upper limit at a chosen confidence level.

• combinePlot = <no|yes>

To enable this action, this config must be explicitly set to yes (default no).

• combineNcurves = <#ncurves>

The number of curves to combine.

• combineFilenames = <filenames>

The names of the root files produced by the scan action for each curve. Number of
filenames must be the same as the number of curves. The root file name is usually
something like <configFile>.<fitterName>.scanPlot.<actionName>.root

• combinePlotnames = <Rooplot name>

The names of RooPlots in the scan rootfiles. Number of names must be the same as
the number of curves. The names is usually something like “NLLScanPlot nSig”.

• combineAdditive = <#values>

The additive systematic errors for each of the curves. If the errors are symmetric, then
one error is required for each curve. If asymmetric errors are required then the negative
and positive errors should be given. Symmetric and asymmetric errors can not be given
together (if you need to do this then write the symmetric error as an asymmetric error
with the same negative and positive error

An example is shown below:

combineNcurves = 2

combineAdditive = 0.5 0.46 // symmetric errors or

62 RooRarFit

// symmetric errors written as asymmetric errors:

//combineAdditive = -0.50 0.50 -0.46 0.46

//combineAdditive = -0.52 0.51 -0.48 0.47 // asymmetric errors

• combineMultiplicativeUncorrelated = <#values>

The uncorrelated multiplicative systematic errors for each of the curves. If the errors are
symmetric, then one error is required for each curve. If asymmetric errors are required
then the negative and positive errors should be given. Symmetric and asymmetric
errors can not be given together (if you need to do this then write the symmetric error
as an asymmetric error with the same negative and positive error

An example is shown below:

combineNcurves = 2

combineMultiplicativeUncorrelated = 0.5 0.46 // symmetric errors or

// symmetric errors written as asymmetric errors

//combineMultiplicativeUncorrelated = -0.50 0.50 -0.46 0.46

// asymmetric errors

//combineMultiplicativeUncorrelated = -0.52 0.51 -0.48 0.47

• combineMultiplicativeCorrelated = <#values>

The uncorrelated multiplicative systematic errors for each of the curves. Only sym-
metric errors can be given.

An example is shown below:

combineNcurves = 2

combineMultiplicativeCorrelated = 0.5 0.46 // symmetric errors

• combineFitBias = <#values>

If the fit bias has not been applied in the fitting stage it can subtracted from the central
value here. The default value is not to apply a correction. Number of values must be
the same as the number of curves.

• combineUpperLimit = <yes|no CL>

If the first value is set to “yes” the code will calculate a Upper Limit Confidence Level.
The default value is “yes 90” which will calculate a 90% CL upper limit.

• combineXaxisTitle = <X axis title>

You can specify a title for the x-axis.

An example is shown below:

[CombineAct]

combinePlot = yes

combineNcurves = 2 // combine two curves

combineFilenames = "results/RhozKp_Kz.mlFitter_Config.scanPlot.rhoBRScan.root" \\

"results/RhozKp_Kp.mlFitter_Config.scanPlot.rhoBRScan.root"

combinePlotnames = "NLLScanPlot_measBR_Sig" \\

"NLLScanPlot_measBR_Sig"

combineCentralValues = 4.73 3.52 // central value e.g. branching fraction x 10^-6

combineAdditive = 0.5004 0.460768 // symmetric errors for 2 curves

combineMultiplicativeUncorrelated = 0.00946 0.007 // uncorrelated multiplicative errors

combineMultiplicativeCorrelated = 0.211 0.1858 // correlated multiplicative errors

//combineFitBias = 0.0 0.0 // fit bias if not already corrected for. (default)

Chapter 2: RooRarFit Configuration 63

combineUpperLimit = yes 90 // calculate 90% C.L. upper limit (default)

combineXaxisTitle = "Branching Fraction (#times 10^{-6})"

2.4 Sample Configurations

You can find sample configuration files here (http://rarfit.sourceforge.net/Sample_
configs) (Babar internal only). Please copy the sample config file and its dsd file to workdir
to run. A few typical config files are explained below:

• omks.config (http://rarfit.sourceforge.net/Sample_configs/omks.config)
Config file for omegaKz analysis. You can find pretty much everything for the analysis,
yield fit, BR fit, S, C, toy study (scanning, etc.), etc.

• omh.config (http://rarfit.sourceforge.net/Sample_configs/omh.config)
Config file for omegaH analysis. You can find configs for K/pi fitting.

• omrho.config (http://rarfit.sourceforge.net/Sample_configs/omrho.config)
Config file for omegaRho analysis. You can find configs for B–>VV analysis.

• ksboth.config (http://rarfit.sourceforge.net/Sample_configs/ksboth.config)
Config file for eta’Ks analysis. You can find configs for physCat splitting.

64 RooRarFit

Chapter 3: RooRarFit Tutorial File 65

3 RooRarFit Tutorial File

3.1 Introduction

RooRarFit comes with example configuration files that can be used for regression testing and
to test out the RooRarFit commands. The files are available in RooRarFit/doc/tutorial/.
You will first need to generate the test dataset. To generate a dataset that can be used for
regression testing or tutorials:

• Make sure $ROOTSYS is defined

• Create a subdirectory ./Ntuples

• Run the command:

> $ROOTSYS/bin/root -b -q -l RooRarFit/doc/tutorial/make_data.C |& tee make_data.txt

This will create 3 datasets (in ascii and root format) in ./Ntuples

• Ntuples/tut signal.{dat,root} has 10000 Signal events.

• Ntuples/tut uds.{dat,root} has 10000 Continuum events.

• Ntuples/tut bkg.{dat,root} has 2000 Peaking background events.

The dataset is a simulated B0/B0bar (or B+/B-) decay at the B-factories including
mixing and CP violation. The dataset can be used to measure yields, branching fractions,
charge CP asymmetries and Time-dependent CP Violation with event-by-event errors.

The datasets contain the following variables (in this order in the ascii files):

Variable Description of the input variables

mes B mass (GeV/c^2).
deltae Difference in energy of B and sqrt(s)/2 (GeV).
mass A resonance mass (GeV/c^2).
nn A Multi-Variate distribution (e.g. Fisher).
dt Time difference between the two B decays (ps).
tag Flavour tag (B0=1,B0bar=-1) if data treated as B0/B0bar decay.
sigmode a flag that indicates if the K* decayed to K+pi- or K0s pi0. This can be used

as a test of Simultaneous fits and branching fraction measurements.

charge The charge (B+=+1,B-=-1) if data treated as B+/B- decay. The signal has a
charge asymmetry Acp = -0.05.

run A run number (500 or 1000 = signal, 2000 = continuum bkg, 3000 = peaking
bkg).

dterr The error on the time difference, dt (ps).

Once the dataset has been generated the configuration files can be used to test various
aspects of RooRarFit. The configuration file will create a test “real dataset” that will
contain: 100 signal events, 4000 continuum background events and 500 peaking background
events. The input values of the fitted variables and the values returned by RooRarFit are
given in the following table:

Variable Input Fitted

Yield (events) 100 105 +/- 18

66 RooRarFit

BF (x 10^-6) 5.22 5.47 +/- 1.0
Charge Asymmetry -0.05 -0.19 +/- 0.16
S 0.7 0.6 +/- 0.22
C 0.0 0.003 +/- 0.15

If you want more accurate fitted results, increase the number of signal events in the “real
data” sample in tutorial.config e.g.

// In tutorial.config, edit the next line to increase the number of

// signal events sigMC from 100 (up to 10000)

simData = add "MC cocktail" sigMC 100 bkgMC 500 udsMC 4000

When you run the examples, the numerical values of the fits are stored in the ./.params
directory and the ROOT files containing any plots, ntuples or histograms are stored in
./results.

3.2 Example 1 (Yields and Actions):

• To fit the Pdfs for a signal yield measurement (initial values of the parameters are
created in tutorial.config):

> rarFit -A PdfAct doc/tutorial/tutorial.config

• To extract the yield from the simulated "real" dataset (initial values of the parameters
are taken from the output of PdfAct):

> rarFit -A MLAct doc/tutorial/tutorial.config

• To do a pure toy study on an ensemble of events created by the fitted PDFs (initial
values of the parameters are taken from the output of MLAct):

> rarFit -A ToyAct doc/tutorial/tutorial.config

• To do an embedded toy study on an ensemble of events created from the datasets
(initial values of the parameters are taken from the output of MLAct):

> rarFit -A eToyAct doc/tutorial/tutorial.config

• To generate projection plots of the yield (values of the parameters are taken from the
output of MLAct):

> rarFit -A ProjAct doc/tutorial/tutorial.config

• To generate SPlot plots of the yield (values of the parameters are taken from the output
of MLAct):

> rarFit -A SPlotAct doc/tutorial/tutorial.config

• To generate a scan of -log(L) around the yield minimum (values of the parameters are
taken from the output of MLAct):

> rarFit -A YieldScan doc/tutorial/tutorial.config

3.3 Example 2 (Branching Fraction):

To convert the signal yield into a branching fraction taking into account any fit bias:

• To fit the individual PDFs:

> rarFit -A PdfAct -C "bfFitter Config" doc/tutorial/tutorial.config

• To extract the branching fraction from a simulated "real" dataset

Chapter 3: RooRarFit Tutorial File 67

> rarFit -A MLAct -C "bfFitter Config" doc/tutorial/tutorial.config

• Do a “pure” toy study on an ensemble of events created by the fitted PDFs

> rarFit -A ToyAct -C "bfFitter Config" doc/tutorial/tutorial.config

• Do a “embedded” toy study on an ensemble of events created from the datasets

> rarFit -A eToyAct -C "bfFitter Config" doc/tutorial/tutorial.config

• To generate a scan of -log(L) around the branching fraction minimum

> rarFit -A BRScan doc/tutorial/tutorial.config

3.4 Example 3 (Charged asymmetries):

To fit the PDFs for a charged asymmetry Acp measurement, first change “simultaneousFit
= no” to “simultaneousFit = yes” in section “[mlFitter Config]” in tutorial.config. Then:

• To fit the individual PDFs

> rarFit -A PdfAct doc/tutorial/tutorial.config

• To extract the charge asymmetries from the simulated "real" dataset

> rarFit -A MLAct tutorial.config

• To generate a scan of -log(L) around the charge asymmetry minimum

> rarFit -A AScan tutorial.config

3.5 Example 4 (time dependent asymmetries)

To fit the PDFs for a time dependent measurement,

• To fit the individual PDFs

> rarFit -A PdfAct doc/tutorial/tutorial_v3.config

• To extract the asymmetries C and S from the simulated "real" dataset

> rarFit -A MLAct doc/tutorial/tutorial_v3.config

68 RooRarFit

Chapter 4: Questions and Answers 69

4 Questions and Answers

1. How to build this documentation?

You will need versions of texinfo, doxygen and tex to build some or all the documen-
tation

> cd RooRarFit/doc

make the pdf/postscript version of the user guide

> make RooRarFitMakeInfo

make the html version of the user guide

> make RooRarFitTexinfo

make the dOxygen documentation of the source code

> make RooRarFitDoxygen

2. My splitting rule for a model is very long, is there any limits on it?

RooFit does have limit on how long a splitting rule can go for a model. (The limitation
will be removed in the next major RooFit release.) The current default value is 4096.

3. How to blind yields?

CP parameters C and S are the variables can be set to blind easily. You can choose to
blind your yields (or any variable), but it is not quite as easy.

[yourYieldModel Config]

yBlindCat = yBlindCat RooCategory "Yield blind state" useIdx Blind 1 Unblind 0

Comps = Sig Chmls Bkg

Coeffs = nbSig nbChmls nbBkg

nbSig = nbSig RooUnblindOffset "blind nSig" "blind yield of mode xxx" 10 nSig yBlindCat

nbChmls = nbChmls RooUnblindOffset "blind nChmls" "blind yield of mode xxx" 10 nChmls

nbBkg = nbBkg RooUnblindOffset "blind nBkg" "blind yield of mode xxx" 20 nBkg yBlindCat

nSig = nSig 200 L(10 - 500)

nChmls = nChmls 1000 L(0 - 10000)

nBkg = nBkg 2000 L(0 - 10000)

You may also want to add option "b" to configuration mlFitOption in action section
to suppress RooFit messages from fit.

4. I would like to include a component in my fit for self crossfeed (SXF) signal events. I
will then fix the fraction of self crossfeed, and then in my final fit just float the total
signal yield.

Sample configs dealing with SXF Pdf in that fashion can be found in sxfSig.config
(http://rarfit.sourceforge.net/Sample_configs/sxfSig.config). Please notice
that this configuration file is NOT complete.

• I would like to see also the ‘total’ signal PDF, i.e. the sum of the two components,
fit to the complete dataset.

Those plots as projection of the two components are given by default, however,
you should not fit the full dataset on the combined pdf, otherwise we end up with
using the old pdf setting without SXF separation.

5. I am trying to set up a toy job where I embed signal MC and BB MC events with
continuum background events generated from the PDFs and then fit with only the

70 RooRarFit

signal and continuum background components (no BB component in the fit). I want
to use this type of fit to determine if I need a BB component or not.

Suppose your fitter has been setup correctly with two yield components, nSig and
nBkg, your signal MC dataset is sigMC, and BB dataset is bbMC. In your action section
for toy study, change or add:

toySrc_nSig = sigMC 90 // 90 embedded signal events for nSig

toySrc_nBkg = bbMC 27 pdf "@0-27 nBkg" // Bkg has two parts:

// 27 from bbMC, the rest from pdf

6. Why my pulls for embedded yields look wrong?

See Section 2.3.2 [toyStudy Action], page 48, (2nd paragraph).

7. How to get number of embedded events from individual samples in toy study output
root file?

Entries for number of embedded events from individual samples in toy study root

file are named as embdEvt_<toySrc_name>, for example, embedded event number for
sigMC is in entry named embdEvt_sigMC.

8. I have deSig pdf parameters split, how can I get the split parameters for simultaneous
pdf in the fit?

In [deSig Config] section, add/change

pdfFit = simFit

See Section 2.2.1 [commonPdfConfig], page 17.

9. How to fit components of product pdf together?

For example, SigPdf is product PDF, in section [SigPdf Config] add/change config

ndFit = yes

10. How to create/add my own RooAbsPdf?

See Section 2.2.31 [rarUsrPdf Configuration], page 45.

11. I have built a model. Can I fix/float on fit action basis some parameters previous
floated/fixed when I built it in PDF configuration sections?

Yes. For example, if you have nSig as yield and float it, but want to fix it for sPlot, in
action section for sPlot, add/change:

preMLFix = nSig

Please go through configs postPdfFloat, preMLFix, and preMLFloat for more detailed
instructions.

12. Can I embed a fraction of event, for example, 11.3, for embedded toys? This does not
make sense to me since you can only get integer events from datasets.

Yes, you can. Here is how it works. If you allow Poisson fluctuation, it will embed
number of events per experiment which is subject to Poisson fluctuation with mean at
11.3. If you do not allow Poisson fluctuation, it will generate 11 or 12 events randomly
per toy experiment with mean at 11.3.

13. Can I use toy sample for mlFit, scanPlot, sPlot, etc?

Yes. For toyStudy, the first toy sample generated will be saved as "toySample", so
in the same action section, other actions following toyStudy can use the sample, for
example, to do sPlot. Just give toySample as configuration for input data, for example

Chapter 4: Questions and Answers 71

[ToySPlotAct]

// toy options

toyStudy = yes

preToyReadParams = A mlFit

preToyReadSecParams = MCParamSec

toyNexp = 1 // # experiments

toyNevt = 0 extended

// init values

nKKKst = 70 +/- 44 C L(-1000 - 1000)

nKsKsKs = 20 +/- 44 C L(-1000 - 1000)

nKKPiZ = 2.3 +/- 100 C L(0 - 1000)

nSig = 100 +/- 20.00 L(-100 - 500)

// for embedded toy study

toySrc_nSig = sigMC "@0 nSig"

[useToySampleMLFit]

// ml fit

mlFit = yes

mlFitData = toySample

preMLReadParams = no

preMLReadSecParams = no

postMLWriteParams = no

[useToySampleSPlot]

// sPlot

sPlot = yes

sPlotData = toySample

sPlotSaveSWeight = yes

sPlotVars = mes de

preSPlotReadParams = no

preSPlotReadSecParams = no

72 RooRarFit

Index 73

Index

(Index is nonexistent)

74 RooRarFit

